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ABSTRACT  

 

Landscape variables, which are also factors of soil formation, can be combined with existing soil map 

data to train Artificial Neural Networks (ANNs) in order to predict soil types in unmapped areas. In 

this study, the impact of location data and proximity of the training data on the performance of ANN 

models, for two catchments in northern Portugal, is evaluated. Results are largely concurrent between 

catchments, indicating that using latitude and longitude data produces more accurate models, whilst 

taking into account the spatial autocorrelative properties of input data makes ANN models converge 

for a better “local” rather than “global” solution. The conclusion is that hillslopes show some degree 

of connectivity which is passed onto soils, and conforms to the principles of the catena concept. 

 

 

RESUMO  

 

Os tipos de solos existentes em áreas sem cartografia de solos podem ser inferidos combinando 

variáveis de paisagem, igualmente factores de formação de solo, com mapas de solos, através de 

Redes Neuronais Artificiais. Neste estudo, aplicado a duas bacias do norte de Portugal, foi avaliado o 

impacto da utilização de dados de localização e da proximidade das áreas de treino na qualidade da 

predição dos modelos de RNA. A utilização da latitude e longitude produz modelos mais precisos, 

enquanto a consideração das propriedades de autocorrelação dos dados espaciais produz modelos de 

RNA melhor adaptados a soluções locais, do que ao total da área da bacia de drenagem. Conclui-se, 

portanto, que as vertentes apresentam algum grau de conectividade que se transmite aos solos, e que 

está de acordo com os princípios da catena. 

 

 

1. INTRODUCTION 

 

There is a growing need for soil maps at scales suitable for land management and regional planning. 

Soils modulate hydrological fluxes, regulate ecosystems and can play a very important role in 

mediating the impact of climate change. However, most European countries still lack complete soil 

map coverage at medium to large scales because soils surveys are expensive and time consuming. 

Digital Soil Mapping (DSM) is an advanced technique for mapping soil classes (Dobos et al., 2006) 

which has been developed to produce soil maps in a quicker, cheaper, more flexible and consistent 

fashion than the maps obtained through traditional soil survey. DSM can combine computer-based 

technologies, such as Geographical Information Systems (GIS), with advanced techniques, such as 

Artificial Neural Networks (ANNs). ANNs are sophisticated computer programs which are able to 

model complex functional relationships. As such, ANNs can maximize the information content of 

existing soil maps by learning rules that have, more or less explicitly, led to the mapping of the spatial 

distribution of soil classes across the landscape, as long as those rules are based on factors known to 

be responsible for the spatial variation of soil (McBratney et al., 2003). Thus, a set of variables related 

to soil forming factors and the respective soil class are used as training data for the ANNs, which 
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construct rules (Tso and Mather, 2001) that can be used to predict the spatial distribution of soil 

classes in unmapped areas. 

 

Whilst the literature provides a number of examples where ANNs has been developed successfully and 

the spatial variation of soil shown to be induced by a limited number of soil forming factors (Mora-

Vallejo et al., 2008), still little is known about the impact that the high levels of spatial autocorrelation 

found on the landscape variables most commonly used to predict soils can have on the performance 

and accuracy of ANN models. High levels of spatial autocorrelation mean that close neighbours are 

more likely to have similar soil types. Thus, the objective of this study is to evaluate (1) if taking into 

account the spatial location of training samples through the addition of latitude and longitude to the set 

of input variables improves the accuracy of ANN models; (2) if adopting a sampling strategy that 

simultaneously takes into account the range of variation of the landscape variables and minimizes the 

distance between training sites allows ANNs to learn better; (3) if the results of these two hypotheses 

are consistent across the landscape by comparing the results obtained for two catchments; (4) if the 

pattern holds when comparing results obtained for two sets of data with morphometric variables 

derived at two different resolutions, i.e. if results change with scale; and, (5) if impact of location and 

sampling strategy varies with the type of ANN architecture used. 

 

 

2. MATERIAL AND METHODS 

 

2.1. Study Areas 

 

Two catchments in northern Portugal were selected for this study (Fig. 1): Mondim de Basto (MB) in 

the NW region (911km
2
) and Vila Real (VR) in the NE region (468km

2
). These catchments were 

chosen because they are located in areas covered by published 1:100 000 soil maps. Additionally, they 

were chosen because they present diverse geomorphological and ecological characteristics and include 

soil classes representative of those found in the NW and NE soil mapping regions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Soil Class Distribution in the Studied Catchments: Mondim de Basto and Vila Real. 

 

 

2.2. Data and Methods 

 

Independent variables used for training the ANNs included continuous terrain data and categorical 

maps. One terrain dataset is the SRTM digital elevation data with a 90m resolution (2001), freely 

available for download (courtesy of the USGS), and the other dataset was derived from a TIN model 

supplied by IGeoE at 1:25 000, from which a DEM with a 25m resolution was produced. 

Morphometric variables were derived from each of the DEMs using ArcGIS software, and seven 

variables were selected after multicollinearity tests showed little data redundancy: slope, plan and 

profile curvatures, upslope catchment area, dispersal area, wetness index and potential solar radiation. 

All the continuous variables were re-scaled to a 0-255 value range. Categorical data used in the 
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models included land use and lithology. Land use data were extracted from the Corine Land Cover 

2006 dataset (CLC2006) and lithology classes were obtained from digitised geological maps of 

northern Portugal at 1:200000 (1989 and 2000).  

In addition to the independent variable dataset, digital soil data were extracted from 1:100 000 maps to 

train the ANNs. One dataset was provided by DRAEDM (the NW regional department of agriculture) 

and the other freely available for download, courtesy of the University of Trás-os-Montes and Alto 

Douro (UTAD). All datasets were clipped to the catchment areas and converted to a raster structure 

with 90m and 25m cell sizes, using the ETRS 1989-TM06. Spatial autocorrelation was evaluated 

through Moran´s I test, which indicated that in both catchments autocorrelation is significantly high 

for slope (0.76/0.82) and very high for potential solar radiation (0.88/0.88) and altitude (0.99/0.98). 

Thus, in order to account for the possible effects of spatial autocorrelation, the x, y coordinates 

(longitude and latitude) were also included in the input set to indicate location. 

 

Two types of ANN architectures were used to predict soil classes using IDRISI Taiga software (Clark 

Labs): the highly popular supervised method, Multi-Layer Perceptron (MLP), known as error back-

propagating algorithm (Haykin, 1999) and the Kohonen´s Self-Organizing Map (SOM). 

Notwithstanding the importance of the parameterisation of the ANNs, it is not the focus of this paper 

to provide a comprehensive description of all the model runs. However, for both ANN algorithms 

equivalent experimental settings were tested whenever possible, in terms of network topology and 

parameters, training parameters and stopping criteria. Several tests were performed, changing the 

training parameters progressively at each run, in order to find out the best combination of parameters 

that achieved as high accuracy as possible. Training ended when one of the stopping criteria was 

achieved and only the best results in terms of accuracy are analysed herein. Note however that for the 

same sampling method and parameter combination, five model runs were performed to average their 

accuracies because results may vary due to slight differences in seeding of training pixels. 

 

Two different sampling strategies were implemented for training the MLP and the SOM networks: one 

random and one stratified. An even number of training sites (500 pixels) were selected, whenever 

possible, for each soil type (Fluvisols often did not cover an area large enough to provide those many 

training sites). Despite the number of training sites being proportional to the number of soil classes in 

both catchments, random sampling implies that sites were not chosen evenly in each soil type strata. 

For the stratified sampling, training pixel vectors were located by choosing the nearest coordinates for 

each soil type that simultaneously were representative of the distribution of the predicting variables 

(morphometric data, land use and lithology), i.e. coordinates were also chosen evenly in the frequency 

space. In addition to testing the impact of training the networks with data collected from a close 

neighbourhood, tests were performed for both 10 and 12 predicting variables, where the latter included 

latitude and longitude as input data, and for standardized and non-standardized data. The ANN 

modules in IDRISI evaluate accuracy on part or whole of the training sample, which does not provide 

an independent assessment. Thus, accuracy was assessed both on the training sample and at the 

catchment level, i.e. based on the accuracy to predict soil classes in the whole catchment. The latter 

using the Map Comparison Kit 3.2.2 software.    

 

 

3. RESULTS AND DISCUSSION 

 

Table 1 presents a synthesis of the best accuracy results obtained for Mondim de Basto and Vila Real, 

which varied between 21% and 87%. On the whole, adding location as input data tends to improve the 

level of accuracy, independently of the catchment studied, type of neural network architecture and 

sampling strategy used. Nevertheless, the trend is somewhat weaker if the SOM network is used. A 

detailed analysis shows that not only the accuracy improvement is lower for SOM, but also, in those 

cases that accuracy declines if using 12 variables, the drop in accuracy is substantially high, therefore 

concealing the average trend. Results similar to those obtained with SOM are also obtained for the 

Vila Real catchment. No clear pattern in accuracy change is detected with standardization of data or 

change in resolution of morphometric data, as in Mondim de Basto with 25m pixel resolution and in 

Vila Real with 90m pixel resolution there is no significant difference in the number of experiments 
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that showed either improvement or decline in accuracy levels. Nevertheless, on the whole, adding the 

x, y coordinates has a higher positive impact on accuracy if morphometric data has a coarser 

resolution. 

 
Table 1 – Synthesis of best ANN accuracy results obtained for the Mondim de Basto and Vila Real catchments 

   

25m resolution MB 90m resolution MB 25 m resolution VR 90m resolution VR 

  Validation 

Reference 

RD SN RD SN RD SN RD SN 

 
ANN 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

10 

Var 

12 

Var 

N
o
n

-

S
ta

n
d

a
r
d

 

M
L

P
 

Sample 63.3 64.5 49.8 69.6 59.3 64.9 54.3 71.8 70.2 71.7 46 61.3 72.9 74.4 39.8 86.9 

Catchment 63.4 66.3 33.4 29.5 63.7 67.9 36.7 35.7 72.1 73.5 47.0 45.6 72.3 74.0 37.8 20.9 

S
O

M
 

Sample 68.2 67.7 63.1 70.2 63.6 67.7 68.7 73.0 73.5 73.4 65.8 65.7 75.0 74.3 81.0 86.0 

Catchment 52.0 59.9 31.0 23.7 60.6 62.1 38.4 40.4 70.5 70.5 51.3 51.3 72.6 72.2 42.2 22.4 

S
ta

n
d
ar

d
 

M
L

P
 

Sample 65.6 62.9 46.0 error 61.1 59.4 50.1 57.1 66.2 66.6 42.1 45 72.8 68.4 37.2 68.4 

Catchment 58.0 61.2 45.0 error  65.0 65.1 39.3 54.4 68.4 67.5 30.0 30.4 73.7 66.2 67.2 30.9 

S
O

M
 

Sample 73.3 70.8 75.3 77.7 68.0 69.0 75.0 80.0 76.6 78.1 64.8 70.1 67.0 67.0 64.0 64.0 

Catchment 58.0 62.8 45.0 30.0 64.8 63.7 45.9 36.7 72.5 74.6 57.0 54.3 60.9 60.9 39.4 39.4 

 

Accuracy levels tend to be on average over 10% higher if models are validated at the training sample 

rather than the catchment level and if the sampling strategy also uses training sites that are in the 

vicinity (SN data) because soils are spatially autocorrelated. Indeed, the results of the “sample 

validation” are shown mainly to illustrate the fact that validation procedures should not be limited by 

software because validation of soil-landscape models should be performed at the spatial extent in 

which models are meant to make predictions, and this is clearly the catchment. Therefore, it is 

interesting to note that predictions at the catchment scale are substantially higher if using random (RD) 

data rather than shortest-distance (SN) data (66% vs. 40%, respectively). This is due to the fact that the 

latter influences the models to create too large homogeneous patches which are generally correct 

locally, but fail to predict accurately globally, i.e. over the whole catchment.   

 

 

4. CONCLUSIONS 

 

Considering accuracy levels measured at the catchment scale, most accurate predictions were 

consistently made using the MLP network with 12-variable random data, and marginally better with 

90m pixels (66% –74% accuracy levels, highlighted in bold in Table 1). Thus, the addition of location 

data as input data clearly improved models because ANNs learnt that distance influences soil class, i.e. 

close neighbouring positions are more likely to be similar and vice-versa, indicating that the flow of 

water and sediment across the hillslopes gradually changes soils. Therefore, the spatial distribution of 

soils in the studied catchments conforms to the principle of soil catena, which means that hillslopes 

have some degree of connectivity. Thus, the higher the connectivity of the landscape, where there are 

significant lateral water and sediment flows, the more important it is to use “location” as input data in 

landscape models for the prediction of soils over large areas. 
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