
1 INTRODUCTION 

The assessment of susceptibility associated to mass 
movements reveal in recent years significant im-
provements in indirect statistically-based methods 
(Guzzetti et al. 1999, 2005, Zêzere et al. 2004). Cur-
rent Spatial Data Analysis (SDA) techniques allow 
the independent validation of results in post-
processing operations, for prediction models based 
on both bivariate and multivariate statistical methods 
(Fabbri et al. 2002, Chung & Fabbri 2005). There-
fore, validation is not anymore exclusively depend-
ent on the occurrence of new instability events. 

Assessment of landslide susceptibility is always 
based on the assumption that future mass move-
ments are more probable to occur in areas with con-
ditions similar to those that originate slope instabil-
ity in the past (Carrara et al. 1999). In this context, 
recent developments in Geographical Information 
Systems allow the development of models resulting 
from the spatial relationships between landslides and 
an increasing number of landslide predisposing fac-
tors. The quality of the landslide inventory and of 
the landslide predisposing factors database are of 
crucial importance for the quality of prediction re-
sults, independently on the statistical tools used for 
the modelling procedure. Usually, it is not easy to 
obtain systematic and detailed cartographic data that 
reflects directly the physical parameters involved in 

slope instability (e.g., shearing forces, soil shear 
strength, and spatial and temporal variation of pore 
water pressure). Therefore, it is common to make re-
course to the available cartography that may corre-
late with landslide distribution (e.g., terrain mor-
phology, geology, land use). However, the 
significance of such themes as landslide predispos-
ing factors is frequently not evaluated. 

The present study aims at evaluating quantita-
tively the relevance of different predisposing layers 
for shallow translational slides susceptibility as-
sessment, using a spatial data set from a test site lo-
cated north of Lisbon (Portugal). 

The main objectives of this study are: (i) to 
evaluate the relation between the number of vari-
ables within a statistic/probabilistic landslide sus-
ceptibility model and the quality of predicted results; 
and (ii) to assess the weight of each individual land-
slide predisposing factor by applying a sensitivity 
analysis, and to define the best variable combination 
by computing the corresponding success and predic-
tion rates. 

2 STUDY AREA 

The sensitivity evaluation of landslide susceptibility 
models to the type and number of landslide predis-
posing factors was performed in a test site of 20 km2 
located northward of Lisbon. The test site of 
Fanhões – Trancão (Fig. 1) is characterized by the 
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monocline geological structure, and the layers dip 
from 5º to 25º towards south and southeast. From the 
lithological point of view, the outcropping rocks are 
very heterogeneous and include conglomerate, sand-
stone, claystone, marl, marly limestone, limestone, 
compacted basalt and volcanic tuff, dated from the 
Cretaceous to the Palaeogene. 

The monocline setting and the diversity of geo-
logical formations sustain a cuesta landscape, and 
the Fanhões-Trancão test site is located in the dip 
slope of the cuesta, i.e., a substructural slope defined 
by a general coincidence between the topographical 
surface and the dip of the strata. The geological set-
ting also controls the fluvial system, and the most 
important rivers run in the same direction of the dip 
of strata. This is the case of the Fanhões river and of 
the Trancão river, located in the west and east side 
of the test site, respectively (Fig. 1). The Fanhões 
and Trancão valleys are the most relevant geomor-
phologic features within the study area because of 
their strong deep and the general steep slopes, al-
though the altitude of the area does not exceed 335 
m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Study area location and distribution of shallow trans-
lational slides.  
 

The detailed geomorphologic mapping (scale 
1:2000) of the study area allowed the identification 
and characterization of 100 shallow translational 
slides, resulting in 143,000 m2 of unstable area and 
corresponding to 0.7 % of the total study area. Shal-
low translational slides within the test site affect al-
most exclusively colluvium deposits and have minor 
dimension (mean area, 1422 m2; mean volume, 357 
m3). These landslides occur along planar rupture 
zones located usually from 0.5 to 1.5 m below the 
topographic surface. 

Shallow translational slides occurred in the study 
area during the last 4 decades have been triggered by 
intense rainfall periods ranging from 1 to 15 days 
(Zêzere & Rodrigues 2002, Zêzere et al. 2005). In-
tense rainfall is responsible by the rapid growth of 
pore pressure and by the loss of the apparent cohe-

sion of thin soils, resulting in failure within the soil 
material or at the contact with the underlying im-
permeable bedrock composed of claystone, marl or 
volcanic tuff (Zêzere et al. 2005, 2007). 

3 LANDSLIDE SUSCEPTIBILITY 
ASSESSMENT AND SENSITIVITY ANALYSIS 

The susceptibility assessment to shallow translation-
al slides occurrence is based on the favorability con-
cept (Chung & Fabbri 1993, Fabbri et al. 2002). 
Within this concept, we assume that future proba-
bility of landslide occurrence can be quantitatively 
evaluated by bi-variate statistical relationships be-
tween the spatial distribution of past landslides and 
several types of independent spatial data sets that are 
understood as landslide predisposing factors. 

The landslide predisposing factors used in this 
study are the following: slope angle, slope aspect, 
transversal slope profile, lithology, superficial depo-
sits, geomorphological units and land use (Table 1). 
More details about the data collection and database 
structure can be found in Reis et al. (2003) and 
Zêzere et al. (2004, 2007). 

 
Table 1. Predisposing factors used for shallow translational 
slides susceptibility assessment. _____________________________________________ 
Id  Predisposing factor       # of classes _____________________________________________ 
A  Slope angle         8      
B  Slope aspect         9      
C  Transversal slope profile     5      
D  Lithological units       6      
E  Superficial deposits       7      
F  Geomorphological units     11      
G  Land use          6      _____________________________________________ 
 

Figure 2 summarizes the methodological proce-
dures for the landslide susceptibility assessment and 
validation, as well as for the sensitivity analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Methodology for landslide susceptibility assessment 
and validation. 

 
The calculation of a priori and conditional prob-

abilities was the first step in the cartographic data in-
tegration. These probabilities were estimated by 
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overlapping the landslide map to those maps 
representing each landslide predisposing factor, and 
using the following equations: 
(i) a priori probability of landslide occurrence 

area

area
sPp

S
T

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1) 

where Sarea = landslide area within the test site; Tarea 
= total area of test site. 
(ii) a priori probability of occurrence of a class x be-
longing to the predisposing factor T 

area
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T
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 (2) 

where Xarea = area of class x from the predisposing 
factor T. 
(iii) conditional probability of landslide occurrence 
in the class x from the predisposing factor T 

Cp = ( )1
11

Sx

Xarea
−−  (3) 

where Sx = landslide area within class x from the 
predisposing factor T. 

 
Scores obtained by the application of equation (3) 

for each class of each considered landslide predis-
posing factor are interpreted as favorability values, 
or landslide susceptibility indicators. 

The probability of landslide occurrence given n 
landslide predisposing maps is obtained using the 
conditional probability integration rule through the 
next expression (Chung & Fabbri 1999, Zêzere et al. 
2004): 

P = 
( )( )1 2 1 2

1

* *...* * *...*
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pT pT pTn pT pT pTn
Tn

P P P C C C
Ppslide T T Tn−  (4) 

where T1, T2, …, Tn = set of landslide predisposing 
factors; Pp = a priori probability of occurrence of a 
class x from the predisposing factor T; Ppslide = a 
priori probability of landslide occurrence; Cp = 
conditional probability of occurrence of a landslide 
in the class x from the predisposing factor T. 

 
The equation (4) was applied on a 5 m grid cell 

structure that is reasonably conform to the detail and 
resolution of the cartographic database (Zêzere et al. 
2007). The obtained results (a score for each pixel of 
the study area) range between 0 and 1 and measure 
the susceptibility (or spatial probability) of occur-
rence of future shallow translational slides. 

The prediction model performance was assessed 
through the computation of success rate curves 
(Fabbri et al. 2002). These curves were constructed 
by crossing the distribution of the total set of 
landslides used to generate the susceptibility model 
with the prediction results, after sorting in descend-

ing order the susceptibility values corresponding to 
each pixel. Additionally, we compute the ‘Area Un-
der the Curve’ (AUC) for each success rate curve, in 
order to quantify the model performance, and to al-
low the objective comparison among different suc-
cess rate curves. The AUC values range from 0 to 1, 
and the quality of the prediction model increases 
with the increase of the AUC value. 

The landslide susceptibility model was applied, in 
a first step, to each landslide predisposing factor 
considered individually, and seven prediction rate 
curves were constructed. The AUC values corres-
ponding to these curves were used to rank variables. 
In the next step, the landslide susceptibility model 
was performed using groups of 2, 3, 4, 5, 6 and 7 
predisposing factors that were selected according to 
the above mentioned AUC-based ranking. 

Lastly, the models corresponding to the best vari-
able combinations are tested by the computation of 
prediction rate curves (Chung & Fabbri 2005), based 
on the temporal partition of the original landslide da-
ta base in two parts: prediction set (used to develop 
the landslide prediction model) and validation set 
(used for the independent validation of the predicted 
results). 

4 RESULTS AND DISCUSSION 

As previously referred, one of the main goals of the 
sensitivity analysis was to assess the weight of dif-
ferent landslide predisposing factors within a statis-
tically-based landslide susceptibility model. There-
fore, Figure 3 and Table 2 illustrate, respectively, 
the success rate curves and the corresponding AUC 
obtained by applying the predictive model using 
separately each one of the slope instability predis-
posing factors. The obtained results demonstrate that 
the considered independent variables do not corre-
late in the same way with landslide distribution 
(AUC ranging from 0.67 to 0.80). Moreover, accord-
ing to AUC records, ‘slope angle’ and ‘geomorpho-
logical units’ are the variables more able to predict 
the future occurrence of shallow translational slides. 
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Figure 3. Success rate curves corresponding to individual land-
slide predisposing factors. 
 
Table 2. Hierarchy of predisposing factors for shallow transla-
tional slides occurrence, according to success rate curves and 
AUC (Area Under the Curve). _______________________________________________ 
Rank   Variable ID Variable name     AUC _______________________________________________ 
1     A    Slope angle      0.802 
2     F    Geomorphological units  0.786 
3     B    Slope aspect      0.738 
4     E    Superficial deposits   0.732 
5     D    Lithological units    0.703 
6     C    Transversal slope profile  0.671 
7     G    Land use       0.633 _______________________________________________ 

 
The variable ranking summarized in Table 2 was 

used to define the conjugation of landslide predis-
posing factors that support the next landslide suscep-
tibility models (i.e. models running with 2 variables, 
3 variables, 4 variables, 5 variables, 6 variables and 
7 variables). Figure 4 illustrates the success rate 
curves of these landslide prediction models, and Ta-
ble 3 summarizes the corresponding ‘Area Under the 
Curve’. Additionally, Figure 5 illustrates the varia-
tion on models prediction capability according to the 
number of variables within the model, for some 
standard areas of maximum landslide susceptibility 
(corresponding to 5%, 10%, 20%, 30% and 40% of 
the total study area). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Success rate curves corresponding to landslide sus-
ceptibility models obtained using from 2 to 7 predisposing fac-
tors (2 variables = variable Id: A+F; 3 variables = variable Id: 
A+F+B; 4 variables = variable Id: A+F+B+E; 5 variables = 
variable Id: A+F+B+E+D; 6 variables = variable Id: 
A+F+B+E+D+C; 7 variables = total variable set). 

 
Table 3. Area under the curve (AUC) of success rate curves 
corresponding to landslide susceptibility models obtained using 
from 2 to 7 predisposing factors.  _______________________________________________ 
Variables in the model           AUC _______________________________________________ 
2 variables (variable Id: A+F)         0.839 
3 variables (variable Id: A+F+B)        0.847 
4 variables (variable Id: A+F+B+E)       0.857 
5 variables (variable Id: A+F+B+E+D)     0.852 
6 variables (variable Id: A+F+B+E+D+C)    0.854 
7 variables (variable Id: A+F+B+E+D+C+G)   0.857 _______________________________________________ 
 

The analysis of Figures 4 and 5 and Table 3 allow 
concluding that:  
(i) the quality of landslide prediction models demon-
strates a slight tendency to improve with the incre-
ment on the number of variables within the model, 
as it is shown by the AUC values (Table 3). This is 
particularly true when we consider the top 5% and 
10% of the total area classified as more susceptible 
to slope instability (Fig. 5); 
(ii) if we consider the 30% and 40% of the total area 
classified as more susceptible, the predicted results 
tend to stabilize (Fig. 5), with maximum variations 
of 4% on success rate curves. These features demon-
strate the low sensitivity of landslide prediction 
models to the increasing number of landslide predis-
posing factors; 
(iii) the introduction of more variables in the 
landslide prediction model, does not generate neces-
sarily better results in success rates. For instance, the 
model produced using 4 variables generate better 
prediction results, when compared with those ob-
tained using 5 and 6 variables, as it is confirmed by 
the corresponding AUC values (Table 3). 
(iv) it is possible to predict the future spatial occur-
rence of shallow translational slides in the study area 
with very satisfactory results, based on a restricted 
number of landslide predisposing factors. For in-
stance, the susceptibility model produced with 4 va-
riables (slope angle, geomorphological units, slope 
aspect and superficial deposits) shows results very 
similar to those obtained using the total set of va-
riables, as it is confirmed by the shape of success 
rate curves (Fig. 4) and the corresponding AUC val-
ues (Table 3). Moreover, results obtained with the 
above mentioned 4 landslide predisposing factors 
are even better than those obtained with the com-
plete set of variables when we isolate for analysis 
the 20% and 30% of area defined as more suscepti-
ble (Fig. 5).  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variation on the predictive power of landslide sus-
ceptibility models according to the number of variables in the 
model (higher susceptibility scores corresponding to 5%, 10%, 
20%, 30% and 40% of the total area were selected for com-
parison). 

 
Figure 6 and Figure 7 show the susceptibility 

maps to shallow translational slides occurrence in 
the study area, based on 4 predisposing factors 



(slope angle, geomorphological units, slope aspect 
and superficial deposits) and on the total set of pre-
disposing factors, respectively. In order to allow 
map comparison, we define 6 landslide susceptibility 
classes, which were generated in the same way for 
both maps as % of the total area, after sorting in des-
cending order the susceptibility values correspond-
ing to each pixel. Table 4 summarizes the spatial 
probabilities computed for each 1% of the total 
study area, for landslide susceptibility classes 
represented in Figures 6 and 7. The obtained results 
are very similar, despite the higher probability cor-
responding to the first susceptibility class in the map 
based on the complete set of predisposing factors 
(Table 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Shallow translational slides susceptibility map based 
on 4 predisposing factors (slope angle, geomorphological units, 
slope aspect and superficial deposits). Susceptibility classes 
were defined as % of the total area, after sorting in descending 
order the susceptibility values corresponding to each pixel. 
STS = shallow translational slides. 

 
The comparison between Figure 6 and Figure 7 

allows concluding that the obtained spatial patterns 
of landslide susceptibility are very similar. This fact 
is more evident for the high susceptibility classes, 
which is in accordance with the success rate data. 
The main difference found between landslide sus-
ceptibility maps is the homogeneity level of repre-
sentation of susceptibility classes, which is higher in 
the prediction model reported in Figure 6. This dif-
ference is explained by the different number of 
‘unique conditions’ (particular terrain combinations) 
presented within landslide prediction models. These 
‘unique conditions’ result from the crossing among 
the set of predisposing maps considered in each 

model. Therefore, the prediction model based on 7 
variables generates 15,636 unique conditions that 
contribute to a less regular pattern of susceptibility 
distribution (Fig. 7). On the other hand, the predic-
tion model supported by 4 variables generates only 
234 unique conditions, which justify the higher spa-
tial homogeneity of susceptibility classes (Fig. 6). 

Finally, the prediction capability of landslide sus-
ceptibility models based on 4 and 7 landslide predis-
posing factors was assessed through the construction 
of prediction rate curves. These curves are shown in 
Figure 8 and were constructed by dividing the origi-
nal landslide data base in two groups using a tem-
poral criterion: the landslide prediction group (46 
shallow translational slides occurred prior to 1980 
that were used to develop a new landslide prediction 
model); and the landslide validation group (54 shal-
low translational slides occurred after 1980 that 
were used for the independent validation of the pre-
dicted results). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Figure 7. Shallow translational slides susceptibility map based 
on the complete (7) set of predisposing factors. Susceptibility 
classes were defined as % of the total area, after sorting in des-
cending order the susceptibility values corresponding to each 
pixel. STS = shallow translational slides.  

 
Table 4. Estimated probability (%) for landslide susceptibility 
classes represented in Figures 6 and 7, per 1% of total area. _______________________________________________ 
    Top 5  5-10   10-20  20-30  30-40  40-100  _______________________________________________ 
Figure 6  5.9  4.8   2.5   1.0   0.5   0.1 
Figure 7  7.0  4.6   1.7   0.9   0.9   0.1 _______________________________________________ 

 
As it was expected, both prediction rate curves 

are below the corresponding success rate, which 
were produced using the same landslide data set for 
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modeling and validation. Anyway, the prediction 
rate curves show fairly acceptable results for both 
models performed with 4 and 7 variables. For in-
stance, 47% to 50% of landslides occurred after 
1980 are within the 10% of the total area classified 
as more susceptible (Fig. 8). These features grow up 
to 72% if we consider the 20% of the total area clas-
sified as more susceptible by both prediction models 
(Fig. 8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Prediction rate curves of landslide susceptibility 
models obtained using 4 predisposing factors (slope angle, 
geomorphological units, slope aspect and superficial deposits) 
and 7 predisposing factors (corresponding success rate curves 
are also plotted for comparison). 

 
The prediction rate curves corresponding to 

landslide susceptibility models produced using 4 and 
7 landslide predisposing factors are very similar 
(Fig. 8) allowing to conclude that prediction perfor-
mance is equivalent for both models. This fact is al-
so confirmed by the corresponding AUC: 0.809 for 
the model based on 4 variables; 0.808 for the model 
based on 7 variables. 

5 CONCLUSION 

The relationship between the number of predispos-
ing factors within a statistically-based landslide pre-
diction model and the quality of predicted results is 
not linear. The results obtained here prove that the 
introduction of additional variables into a landslide 
prediction model does not generate necessarily bet-
ter success rates. Moreover, as it was shown in the 
present analysis, it is possible to obtain an accurate 
landslide susceptibility map using a limited number 
of instability predisposing factors in the prediction 
model (e.g. slope angle, geomorphological units, 
slope aspect and superficial deposits). However, 
these “key variables” cannot be extrapolated for oth-
er types of landslides within the test site or for other 
study areas. Therefore, a prudent approach to 
landslide susceptibility assessment implies, on a first 
step, the use of a set of coherent and logical 
landslide predisposing factors as large as possible. 

On a second step, the landslide predictive models 
can be simplified, with minor losses, by removing 
those variables that prove to be irrelevant to the pre-
diction performance of the susceptibility model. 
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