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Resumen: El objetivo de este trabajo es evaluar la influencia de los MDE con diferentes propiedades en la 
capacidad de predicción de los modelos de susceptibilidad a deslizamientos rotacionales, a través de uno de sus 
parámetros derivados más importantes en la inestabilidad de laderas (pendiente). Los resultados indican que los 
diferentes MDE influyen en la distribución de frecuencias de valores de pendiente. No obstante, la capacidad 
para predecir deslizamientos rotacionales permanece casi inalterada. La razón de esto es que las mayores 
diferencias de pendiente encontradas se producen en las zonas donde generalmente no hay deslizamientos. Así, 
la evaluación de la susceptibilidad a deslizamientos es relativamente independiente de la complejidad de la 
construcción del MDE. Sin embargo, esta conclusión solo es cierta si la calidad de los datos de las curvas de 
nivel para la elaboración del modelo está garantizada y los deslizamientos ocurren en las zonas de mayor 
pendiente. 
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1. INTRODUCTION 
 
Digital Elevation Models (DEMs) are 
essential for landslide susceptibility 
assessment, directly through altitude data 
but also indirectly because some 
parameters derived from altitude are 
predisposing landslide factors.  
Thus, the aim of this work is to assess the 
influence of different DEM characteristics 
in the predictive capacity of susceptibility 
to rotational slide modelling at the basin 
scale, using as a proxy the predictive 
ability of slope angle.  
 
2. DATA & METHODOLOGY 

 
2.1. Study area and data 
The study area is the Alenquer river basin 
(Fig. 1), located north of Lisbon (Portugal). 
The catchment is 118 km2 in area, and is a 
hilly landscape with altitudes ranging 
between 0 and 373 m. The major relief 
elements are strongly controlled by 
differences in the resistance and plasticity 
of the rocky formations, such as sandy-
marls, sandstones and limestones. 

 
 

Fig. 1. Alenquer river basin. 

 
Field work and interpretation of 
orthophotomaps (0.5 m resolution) allow 
the identification and mapping of 116 
rotational slides (0.98 landslides/km2), with 
a total unstable area of 663,508 m2 (0.56% 
of the study area). 
 
2.2. Digital Elevation Model (DEM) 
The original elevation data used was a 
1:10,000 contour map (5 m equidistance 
lines) and spot height data. In order to 
avoid distortion problems near the 
boundaries, all the DEMs are wider than 
the study area, and were computed using a 
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Triangular Irregular Network (TIN) model. 
These models allow a very accurate 
representation of relative complex 
topographical surfaces (Reis, 2006). 
However, these models may have difficulty 
in correctly representing flat areas, such as 
valley bottoms and hilltops. These areas 
are known to be responsible for the major 
altimetric errors in DEMs (Carrara et al., 
1997), due to the lack of data inside closed 
contours or irregular reliefs. 
In order to decrease the areas lacking data, 
automatic or semi-automatic procedures 
can be adopted (Eastman, 2003; Bonin and 
Rosseaux, 2005). In this work two different 
procedures were tested: (1) the production 
of an artificial auxiliary spot height 
network using a parabolic function; (2) an 
automatic sinkholes removal operation. 
The artificial network allows the 
calculation of about 50,000 additional 
height spots. However, many of these spots 
are superfluous as they are spatially 
redundant using the original contours and 
spot height data. For this reason, filters 
were used to remove points and avoid 
excessive and erroneous information. 
Thus, auxiliary height spots which are 
within a buffer zone of 5 and 10 m from 
the original contours and spot data were 
removed. With this correction 30,000 spots 
were maintained with the 5 m buffer and 
only about 19,000 with the 10 m buffer. 
The various approaches resulted in four 
DEMs with different amounts of input 
data: (a) single contours (CN), which often 
are the only available topographic data; (b) 
original contours and height spot data 
(CN+S); (c) additional artificial network 
height spots associated with 5 m buffering 
zones (CN+S+ASN5); and (d) similar to 
(c) but using a 10 m buffering zone 
(CN+S+ASN10). An automatic correction 
to remove sinkholes was applied to each, 
resulting in four further DEMs to be tested. 
Thus, 8 different DEMs were used to 
derive slope angles. 
 
2.3. Slope angle and predictive capacity 

Slope data extracted from DEM grid 
structured files (5 m cell sizes), were 
classified in 1º range classes. First, slope 
angle values were compared by means of 
absolute frequencies as well as the 
correlation percentage between maps based 
on different DEMs. Secondly, the landslide 
predictive capacity was assessed by 
plotting the success rate curves (Fabbri et 
al., 2002) and computing the area under the 
curve (Bi and Bennett, 2003). The 
susceptibility ranking of each slope class 
was performed based on the conditional 
probability to find a rotational slide in a 
specific slope angle class. 
 
3. RESULTS & DISCUSSION 
 
The visual comparison of the DEMs 
produced showed that there are slight 
differences between them (Fig. 2). 
However, the automatic removal of 
sinkholes (depressions) did not produce 
significant differences. This is due to the 
fact that, regardless of DEM analysed, the 
amount of corrected cells had no impact 
over the whole study area, with the 
percentage of corrected cells equal or 
lower to 0.11 (Table 1). 
 

Table 1. Number of corrected cells by the removal of 

depressions 

DEM # corrected cells % corrected cells

CN 650 0.01 

CN+S 3544 0.07 

CN+S+ASN10 3727 0.08 

CN+S+ASN5 4969 0.11 

 
Similar results were obtained for slope 
angle frequency distributions, as shown in 
Fig. 3. The absolute frequencies of slope 
angles clearly show that the higher the 
density of altimetry input data, the lower 
the frequency of values close to zero (Fig. 
3A). Indeed, the main differences are 
observed for gradients lower than 15º. This 
results from the increased amount of 
elevation data, especially in flatter areas 
(hilltops and valley bottoms), which no 



XII Reunión Nacional de Geomorfología, Santander 2012        249 

 Sesión IV. Métodos y técnicas en Geomorfología 

longer have slope angles near zero but 
slightly higher gradients.  
 

Automatic 
sinkhole removal

CN CN+S CN+PC+ASN10 CN+PC+ASN5

Automatic 
sinkhole removal

Automatic 
sinkhole removal

TN TN TN TN

 
 

Fig. 2. Different input data DEM (1:10,000) in Alenquer 
river basin (CN – Contours; S-Height spots; ASN-

Auxiliary Height Spot Network buffer 10 or 5m; TN-
Triangulation network). 
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Fig. 3. Frequency distribution of slope angle derived 
from different DEMs in an Alenquer river basin. 

 

Nevertheless, the comparison between 
DEMs with or without sinkhole removal 
reveals that the final results are almost 
identical and there were no significant 
differences in slope angles obtained with 
either DEMs (see Fig. 3B, for 
example).These results are further 
reinforced when analysing the agreement 
percentage between slope angle maps 
(Table 2). Comparison of DEMs with 
different input data shows that differences 
increase as more artificial height spots are 
added. Whilst the lowest spatial similarity 
found is 75%, if an error of ±1º of slope 
angle value is accepted, then the minimum 

agreement increases to 85% (Table 2). 
Once again the changes produced by 
automatically removing depressions have 
no significant impact on the percentage of 
agreement (> 98%) as shown in Table 3. 
However, the main question remains: will 
the small differences encountered affect the 
slope angle prediction ability in landslide 
modelling? 
 

Table 2. Degree of overlap between tested DEMs (%) 

±1°\= CN CN+S CN+S+

ASN10 

CN+S+

ASN5 

CN --- 89.2 77.9 75.4 

CN+S 94.3 --- 83.3 80.1 

CN+S+ASN10 86.7 91.0 --- 94.7 

CN+S+ASN5 85.4 89.5 98.0 --- 

Upper right – equal slope values (=); lower left – slope 
values with ±1°. 

 
Table 3. Degree of overlap between DEM with or 

without sinkhole removal (%) 
DEM/Slope angle = ± 1 

CN vs CN[c] 99.96 99.97

CN+S vs CN+S[c] 98.8 99.6 

CN+S+ASN10 vs CN+S+ASN10[c] 98.6 99.1 

CN+S+ASN5vs CN+S+ASN5[c] 98.4 99.0 
Equal slope values (=); Slope value error of ±1°. 
 
Analysis of the success rate curves shows 
that the differences in predictive ability are 
minimal (Fig. 4). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re
d
ic
te
d
 r
o
ta
ci
o
n
al
 l
a
n
d
ls
id
e
s

Study area (decreasing  susceptibility)

CN

CN (sink removal)

CN+S

CN+S (sink removal)

CN+S+ASN10

CN+S+ASN10 (sink removal)

CN+S+ASN5

CN+S+ASN5 (sink removal)

AUC

0.696

0.696

0.694

0.694

0.692

0.692

0.692

0.691

 
 

Fig. 4. Success rate curves and Area Under the Curve 
(AUC) of models using slope angles derived from 

different DEMs in the Alenquer river basin. 

 
Nevertheless, the AUC reflects that DEM 
characteristics have some impact on the 
modelling results. In fact, it seems that 
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DEMs with more input data have the least 
predictive ability (Fig. 4). Results highlight 
that the areas in which slope values change 
are areas where landslides do not tend to 
occur, i.e. flat areas. Thus, using more 
altimetry data in those areas will increase 
the slope angle values and classify them as 
areas that are more prone to the occurrence 
of landslides. This reduces the 
discriminatory capacity of flat areas, which 
generally leads to a worse predictive 
capacity. Additionally, it should be pointed 
out that the use of an artificial height spots 
network forces all hilltops and valley 
bottoms to have a parabolic shape, which 
possibly introduces further errors. 
 
4. CONCLUSIONS 
 
The results obtained clearly show that 
slope angle frequency distributions 
obtained from different DEMs have several 
differences, which are mainly found in 
areas with low gradients (<15º). The 
removal of depressions has no significant 
impact on general gradient distributions. 
Nevertheless, differences in slope angle 
values have little impact in the predictive 
ability of rotational slides. Furthermore, it 
appears that the increment of altimetry data 
to produce DEMs leads to reduced 
predictive ability. This is due to differences 
in slope angle values being found mainly 
in areas where landslides tend not to occur 
(flat tops and valley bottoms). Therefore, 
more complex DEMs do not have a 
positive impact on regional landslide 
susceptibility modelling, which allows a 
higher confidence in the use of gradient 
data obtained from simple contours. 
Nevertheless, this idea is strongly 
dependent on the availability of good 
contour data and on the morphology of the 
study area. Additionally, further studies 
should be done to verify if results hold true 
for other morphometric variables derived 
from DEMs commonly used as 
predisposing factors in landslide 
susceptibility models.  
 

Acknowledgements 
The first author is funded by FCT (PhD 
grant BD/SFRH/31667/2006) and research 
work was supported by the DO-SMS 
Interreg-Sudoe project (SOE1/P2/F157).  
 
REFERENCES 
 
Bi, J. and Bennett, K.P. 2003. Regression Error 

Characteristic Curves. In Fawcett, T., Mishra, N. 
(Eds.): Proceedings of the Twentieth International 
Conference on Machine Learning. AAAI Press, 
Washington DC, USA. 

Bonin, O. and Rousseaux, F. 2005. Digital Terrain 
Model computation from contour lines: How to 
derive quality information from artifact analysis. 
GeoInformatica 9 (3), 253-268. 

Carrara, A., Bitelli, G. and Carla, R. 1997. 
Comparison of techniques for generating digital 
terrain models from contour lines. International 
Journal of Geographical Information Science 11 
(5), 451-473. 

Eastman, J.R. 2003. IDRISI Kilimanjaro, Guide to 
GIS and Image Processing. Version 14.00. Clark 
Labs, Worcester, 322 pp. 

Fabbri, A., Chung, C.F., Napolitano, P., Remondo, 
J. and Zêzere, J.L. 2002. Prediction rate functions 
of landslide susceptibility applied in the Iberian 
Peninsula. In Brebbia, C.A. (Ed.): Risk Analysis 
III, Series: Management Information Systems V. 
5. WIT Press, Southampton, 703-718. 

Reis, E.J.M. 2006. As bacias hidrográficas das 
ribeiras da serra de Grândola: dinâmica 
hidrológica e factores condicionantes. 
Dissertação de Doutoramento em Geografia 
Física apresentada à Faculdade de Letras da 
Universidade de Lisboa. Lisboa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




