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Abstract 
 
The prediction models of landslide susceptibility that we have developed, generate 
not only predicted hazard maps but also prediction-rate curves, which allow us to 
estimate the probabilities of the occurrences of future landslides from the hazard 
maps.  For a risk-analysis estimating the “economic” values of the population, 
properties, economic activities, etc., the estimates of the probabilities are absolutely 
critical statistics.  To use the hazard maps for risk analysis, we must be able to 
estimate the probabilit y of occurrence of a future landslide at each hazard level in the 
maps.  Without the estimates of such probabilities, the hazard maps can provide only 
indicators of landslide hazard, but they cannot be directly useful for a decision 
process.  With those probabilities, however, decision makers can quantitatively 
assess the economic sterilization due to the possible damage under the assumptions 
of appropriate scenarios. Hence, they can take a learned and informed decision. 

Predictions are based on “Favourability Functions” that integrate the spatial 
relationships between the distribution of trigger zones of specific dynamic types of 
landslides and the surrounding mapping units and contour intervals.  The latter two 
represent the spatial support to estimate the likelihood of further failures. 

The prediction-rate curves are obtained to interpret  the predictions in spatial-
temporal terms by partitioning the database of trigger-zone distribution and spatial-
support layers (digital maps) in periods of activity, or in non-overlapping spatial sub-
sets, needed for prediction and validation, respectively. The shapes of the prediction-
rate curves empirically measure the quality of the predictions, their robustness, and 
provide the arguments for the cost-benefit analysis of the relationships between the 
spatial prediction patterns and the prediction-rate curves. 

Two applications of Favourability Function models in the Iberian Peninsula are 
used to demonstrate the operational feasibility of generating the prediction-rate 
curves for the spatial-temporal validation needed for risk assessment. 



 
1. Introduction 
 
This contribution stems from the research activity of a project on “New Technologies 
for Landslide Hazard Assessment and Management in Europe” of the European 
Commission’s Environment Programme [1].  A major target of that project was the use 
of geographic information systems (GIS) to assess landslide susceptibility by 
generating hazard maps from systematically constructed spatial databases.  For that 
prediction models were used based on an approach termed “Favourability Function” 
modeling, FF [2].  When we generate a hazard map for future landslides based on FF 
modeling, we also produce the corresponding prediction-rate curve, which allows us 
to estimate the probability of the occurrence of a future landslide in each hazard class 
in the map. 

Traditionally, geomorphologists have constructed landslide hazard maps 
identifying areas likely to be affected by landslides.  It has been achieved by 
geomorphological understanding of the area through aerial photographs and field-
work [3].  Similarly, civil engineers have constructed slope stability maps based on 
deterministic models by studying and interpreting the physical processes of 
landslides using slope angles, soil cohesion, water saturation capacities, shearing 
resistance etc.  Each point in the stability maps shows a level of  “safety factor of 
slope failure” of the unit area surrounding the point [4]. While the hazard maps 
obtained from geomorphologic maps usually show three to five levels of hazard, the 
slope stability maps represent the levels of the safety factor in a continuous scale.   

Landslide risk analysis estimates the “economic” values of each element 
vulnerable to landslide hazard.  Vulnerable elements are the population, properties, 
economic activities, including public services, etc., at risk in a given study area.  The 
specific risk is the expected degree of loss due to a specific damaging phenomenon, 
and it is computed for each vulnerable element. The total risk is the expected 
aggregated damage to human and economic activities due to landslides (e.g., number 
of persons injured, damage to properties or disruption of economic activities).  Natural 
hazard susceptibility is the probability of occurrence of a potentially damaging 
phenomenon of given intensity during a given period.  To use the hazard maps for 
risk analysis, we must be able to estimate the probability of occurrence of a future 
landslide at each hazard level in the maps.   

Without the estimates of such probabilities, the hazard maps constructed by 
geomorphologists or civil engineers can provide only indicators of landslide hazard, 
but they cannot be directly useful for a decision process.  However, if we have the 
estimates of those probabilities, then, by cost-benefit analyses, decision makers can 
quantitatively assess the economic sterilization due to the possible damage under the 
assumptions of appropriate scenarios. Hence, they can take a learned and informed 
decision, rather than opt for an emotional or a “gut-feeling” decision. 

A brief background to predictive models based on FF modeling used is 
introduced here and the results of applications in two study areas in Portugal and 
Spain, respectively, are analyzed to further explore the use of prediction-rate curves to 



derive probabilities assigned to hazardous area units that can be used for the 
representation of risk.   
 
 
2. FF modeling and prediction rate curve 
 
Spatial prediction models have been developed for landslide hazard mapping as a 
follow-up of research mainly in the area of mineral exploration [2,5].  To generate 
predictions, it is assumed that: (1) spatial databases are available or can be 
constructed that provide sufficient information to characterize the typical conditions 
in which individual types of landslides occur in a study area; and (2) that the 
conditions for the occurrence of the past landslides are the same or are very similar to 
the ones in which the future landslides will occur.  

 The term Favourability Function modeling is a framework that covers and 
connects a variety of approaches to spatial data integration.  A procedural sequence 
of steps is provided in Table 1, where it is applied to decision problems that require 
the introduction of spatial components to predict the likely distribution of future 
events such as landslides. Various quantitative integration models have been 
discussed based on different interpretation of favourability as conditional probability, 
certainty, likelihood, belief, or fuzzy set membership function [2,6,7,8].  Applications of 
FF models have been made to many landslide-prone study areas, they have generated 
predicted hazard maps.  The hazard maps show a relative hazard level for future 
landslides in a continuous scale at every point in the map.  Often the hazard levels are 
divided into a number of hazard classes for visualization.  These procedures are 
illustrated in Steps 1.1 and 1.2 in Table 1. 

A critical issue in predictive modeling is the interpretation of the hazard levels in 
predicted maps.  For this, prediction-rate curves have been generated.  They require 
partitioning the distribution of the past landslides.  One way in which the curves are 
obtained is the following.  Using the FF modeling, we generate a predicted hazard map 
showing a relative hazard level in a continuous scale at every point in the map.  This 
is similar to what is done for hazard maps by geomorphologists or for safety factor 
maps by civil engineers.  The next step is to use the hazard map to compute a 
prediction-rate curve, as described in the partition, prediction, and cross-validation 
boxes (2.1, 2.2 and 2.3) of Table 1.  To compute the prediction-rate curves, we must 
have partitioned the past landslides into either time periods, or into randomly selected 
sub-groups.  Other partitioning criteria can also be used to generate the groups of the 
past landslides.  One group has to be used to compute the predicted hazard maps and 
the other to compute the prediction-rate curves.  An artificial example of a prediction-
rate curve is shown in Figure 1. 



Table 1. General strategy in Favorability Function (FF) modeling for landslide hazard 
mapping 

 
Step Task Description 
1.1 

 
 

Preparation Prepare the past landslide layer containing the locations (or 
the scars) of the occurrences of the past landslides in 
study area A, and delineate the scarps (trigger areas) of 
the scars.  Also prepare m map layers of causal (or 
correlated) factors of the occurrences.  Each causal map 
layer consists of a number of mapping units and provides 
evidence for finding the future landslides.   

Co-register all the layers using the geo-reference and select 
a FF model for analysis. 

1.2 
 
 

Estimation Construct FF models [2,6,7,8].  Compute a FF-value at each 
pixel: it shows the relative hazard level for that pixel being 
a part of the scarp of a future landslide.  These computed 
FF-values are in a continuous scale and constitute the 
predicted hazard map.  The values can be divided into a 
number of hazard classes for visualization.   

2.1 
 
 

Partition To generate the prediction-rate curve for the hazard map, we 
divide the scarps of the past landslides into two groups, 
termed Estimation-group and Validation-group.  Either time-
partition or random-partition is generally obtained.  
Whenever possible, the time-partition, where the past 
landslides are divided into two time -periods, is strongly 
recommended. 

 
2.2 Prediction Using the Estimation step 1.2, generate a predicted hazard 

map using the Estimation-group landslides described in the 
Partition step 2.1.   

2.3 Cross-
validation 

For any given hazard level in the predicted hazard map of 
the Prediction step 2.2, select all the pixels whose hazard 
levels are greater than the given level.  Within the selected 
pixels, count the scarps in the Validation-group landslides.  
At each hazard level, compute two ratios, the first ratio is 
for the number of selected pixels and the total number of 
pixels in A, and the second ratio is for the counted scarps 
within the selected pixels and the total number of scarps in 
the Validation-group landslides.  The sets  of two ratios 
constitute the prediction-rate curve of the predicted 
hazard map. 

As the hazard level decreases, the number of selected pixels 
will increase, and the both the ratios will increase to 1.  A 
hypothetical example of a prediction-rate curve is shown 
in Figure 1.   



 
The prediction-rate curve for the hazard map in the Estimation step 1.2 is 

obtained by overlaying the predicted hazard map generated by using the distribution 
of the Estimation-group landslides from the Prediction step 2.2, with the distribution of 
the Validation-group landslides.  The horizontal axis of the curve in Figure 1 is for the 
first ratio described in the Cross-validation step 2.3 and it indicates the proportion of 
the study area classified as hazardous.  The vertical axis in Figure 1 is for the second 
ratio described in the Cross-validation step 2.3, and it indicates the proportion of the 
scarps in the Validation-group landslides within the selected hazardous pixels.   
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Figure 1: Prediction-rate curve of landslide hazard. Points A, B, and C relate 10%, 20%, 

and 30% top values with prediction rates 66%, 82% and 88%, respectively. 
 

In the diagram of Figure 1, the convex prediction rate curve indicates the 
“prediction power” of a predicted hazard map.  If the map has no prediction power 
(i.e., if the predicted hazard map shows a random pattern with respect to the future 
landslides), then the expected proportion of the scarps in the Validation-group 
landslides within a set of selected hazardous pixels is equivalent to the proportion of 
selected pixels in the study area.  For instance, point A in Figure 1 indicates (10%, 
66%).  It means that when we take a hazard level in the predicted map such that the 
proportional amount of pixels, whose level is greater than the chosen one, is 10% of 
the whole study area, then the proportion of the scarps in the Validation-group 
landslides within these 10% selected pixels is 66% (and not just 10% of the scarps as 
expected).  In addition, the points B, and C in Figure 1 indicate the 20% and 30% top 
hazard classes of the study area, respectively.  We can see that they correspond to 
the 82% and 88% prediction rates, so that the rate increases 16% going from A to B, 
and only 6% going from B to C.  This may mean that the most hazardous 10% class 
predicted 66% of the Validation-group landslides, while the second most hazardous 
10% class predicted 16% only.  The subsequent hazardous 10% class predicted 6%, 



i.e., less than the 10% expected.  These three proportions, 66%, 16% and 6% are the 
estimated probabilities of the occurrences of future landslides within the three most 
hazardous predicted classes with relative sizes of 10% of the study area.  Similarly we 
can estimate the probabilities of the occurrences of future landslides within any 
predicted hazard level in the predicted map. 

In practice, we can study the prediction-rate curve and the corresponding 
predicted hazard maps in terms of cost-benefit analysis. Using the prediction rate 
curves, we can also measure the degree of support of combinations of causal factors, 
the effectiveness of different FF models, the time or space robustness of the 
predictions, etc. [7,9,10].  For instance, a decisional issue could be to identify areas of 
predicted highest hazard value that cover no more that 10% of the study area.  Such 
areas could be a first priority for direct inspection on the field or for investing 
resources in prevention works. To exemplify how to use the prediction-rate curves in 
practice, we will use the spatial databases constructed for the two case s tudies in the 
Iberian Peninsula. They are described in the next section. 
 
 
3. Two databases in Portugal and Spain 
 
In Portugal, at the University of Lisbon, a spatial database was constructed for the 
Fanhões -Trancão area, north of Lisbon.  The study area is 17.36 km2 and is part of the 
dip-downstream slope of the Lousa-Bucelas cuesta, a sub-structural slope defined by a 
general concordance between topographic surface and south and southwest dip of 
the strata with angular values of 12°.  Geologically the region is part of the Portuguese 
Meso-Cenozoic sedimentary basin and is located close to the contact between that 
morpho-structural unit and the Tagus River alluvional plain.  The maximum elevation 
does not exceed 350 m a.s.l.  The yearly average precipitation is only 700 mm, 
however, the area is characterized by a great irregularity of rainfall regime considered 
as a failure-triggering factor [11].  Detailed geologic-geomorphologic mapping at 
1:2,000 identified 132 slope movements but 1:10,000 maps were compiled and digitized 
into a 5m x 5m resolution spatial database consisting of digital images of 703 x 761 
pixels.  The causal map layers used are: elevation, slope, aspect maps forming the 
digital elevation model (DEM), geology map, and land use map.  The past landslides 
consisted of the 91 shallow translational slides.  The analysis described in the next 
section will use the following causal factors: the DEM set, geology (6 units), surficial 
deposits (7 units) land use (5 units), and the 91 shallow translational landslides 
divided into two groups of randomly chosen slides.  A detailed description of the 
database and of its statistical analysis is in Corominas et al. [1].  A morphologic 
synthesis of the study region has been provided by Zêzere [11,12,13].  Figure 2a 
shows the distribution of the two groups of landslides used for prediction modeling. 
 
 

In northern Spain, at the University of Cantabria in Santander and the University 
of Oviedo, a spatial database was constructed for the lower part of the Deba Valley, in 
the Basque Province of Guipuzcoa.  The elevation varies between 0 and 700 m a.s.l. 



and the terrain is moderately folded and faulted, consisting of a variety of limestones, 
marls, claystones, sandstones, flysh facies and volcanic rocks corresponding to the 
Cretaceous and Paleogene of the Basco-Cantabrico Pyrenees. The slopes are steep 
and there are surficial deposits, which represent different composition and thickness, 
determining the occurrence of many landslides triggered by intense rainfall episodes.  
The main annual rainfall is about 1,500 mm. Four dynamic types of landslides were 
distinguished: falls, translational, rotational, and flows. The study area covers over 
500 km2 and over 1500 separate landslides were mapped and described.  Using field 
observations and photo-interpreting three different flight coverages of photographs 
(years 1954, 1991 and 1997), the translational landslides and associated flows could be 
classified into three temporal groups: before 1954, during 1954-1991 and during 1991-
1997.  Of the 1:5,000 mapped landslides, the main failure size is about 400 m2, however, 
the resolution of the 1:25,000 maps compiled and digitized was 20m x 20m so that the 
distribution of each landslide corresponded with the closest 20m x 20m pixels.  The 
database consisted of digital images of 2002 x 1801 pixels.  A total of 1493 shallow 
translational slides and flows were used in the analysis.  They were further split into 
two time periods, 532 that occurred during 1954-1991 and 907 during 1991-1997.  The 
second group was further subdivided into two spatial groups containing each 50% of 
the randomly selected slides (i.e., 454 and 453).  The partitioning of the landslides was 
to enable validating the predictions. 

The causal factors are: lithologic map (30 units), vegetation/land use map (7 
units), thickness of surficial deposits (3 classes) and the DEM set.  A detailed 
description of the geology and geomorphology of the study area and of the database 
has been made by Corominas et al. [1] and Remondo [13].  Figure 4a shows the 
distribution of the two time-partitioned groups of landslides.  The analytical results of 
the two databases are discussed in the next section 
 
 
Figure 2: Landslide scarps and scars distribution (A) and prediction pattern for the 

Portuguese study area in (B). UTM Northings and Eastings are for UTM zone 29. 
The illustrations are in the next page. 

 
Figure 3: Some prediction-rate curves for the Portuguese study area: group 1 

landslides were used for predicting and group 2 for validating. The illustrations are 
in the next second page. 

 
Figure 4: Landslide distribution for periods 1954-1991 and 1991-1997, (A), and 

respective prediction pattern, (B), for the Spanish study area.  UTM Northings and 
Eastings are for UTM zone 30. The illustrations are in the next third page. 
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Figure 5: Two prediction-rate curves for the Spanish study area: 907 landslides for 

1991-1997 were used to validate the temporal prediction obtained using 532 
landslides for 1954-1991.  The random partition used 454 landslides of the 907 to 
predict and 453 to validate. 

 
 
4. Generation of prediction-rate curves from the two databases  
 
The spatial database for the Fanhões -Trancão area in Portugal was used to generate 
the predicted hazard map shown in Figure 2b based on one of the FF models termed 
“Likelihood ratio function” [4].  The Estimation-group landslides consist of the 45 
white polygons shown in Figure 2a to indicate the shallow translational landslides 
used to generate the predicted hazard map shown in Figure 2b.  The illustration also 
shows the 46 black polygons that indicate the Validation-group landslides used to 
obtain the prediction-rate curve. The scarps locate the trigger areas of the landslides 
and the scars represent their larger bodies. The gray-level bar in Figure 2b indicates 
the decreasing predicted hazard level from white to black. The causal factors used are 
a combination of all six layers. The corresponding prediction-rate curve is shown in 
Figure 3, together with the curves obtained using single layers and all the six layers 
together.  As it can be seen, slope is the single causal that provides most of the 
support  so that it predicts much better than the other individual ones.  An 
enlargement of the area in the black rectangular frame is shown below.  In this 
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illustration, the prediction-rate curves help to understand the database effectiveness.  
For instance, the 15% of the study area with the highest predicted values contains 
87% of the validation landslides when we use slope and aspect together.  This is 
slightly better than using all six layers.  Lower prediction rates are obtained using the 
other individual layers.  The pattern in Figure 2b predicts only in space, owing to the 
fact that the database allowed only a space separation of the landslides.  It is 
important to note that, although the prediction-rate curve was obtained by comparing 
the predicted hazard map, shown in Figure 2b, with the 46 Validation-group landslides, 
the prediction-rate curve should be used with the hazard map based on all 91 past 
landslides to estimate the probabilities of the occurrences of future landslides. Here 
the prediction refers to “the next 46 landslides” without a specific time period 
identified.  The next application deals also with a prediction in time.  

From the database over the lower Deba valley of northern Spain, the prediction in 
Figure 4b was obtained using the “Certainty factor” model [2,6].  The following causal 
map layers were used: elevation, slope and aspect classes, lithology and vegetation 
units.  The landslide information consisted of 532 translational landslides that 
occurred during 1954-1991 and 907 for the period 1991-1997.  Those mapped in the 
second period were used for validation.  The two time partitions of landslides are 
shown in Figure 4a. In another experiment, the later 907 translational landslides were 
further subdivided into two groups of randomly selected landslides (454 and 453), 
similarly to what done in the Portuguese case study.  The corresponding prediction-
rate curves are shown in Figure 5.  As it can be seen, the top 15% values predict only 
53% of the validation landslides. In the previous example of Figure 3, the top 15% 
predicted 87% of the validation landslides.  Furthermore, the two prediction-rate 
curves in Figure 5 for time and space predictions are very similar.  The time prediction 
curve extends the prediction to “the next 7 years”, while the space prediction curve 
refers to “the next 453 landslides”.  It also should be noted that, although the 
prediction rate curve was obtained by comparing the predicted hazard map, shown in 
Figure 4b, with the 453 Validation-group landslides, the prediction-rate curve should 
be used with the predicted hazard map based on all 907 past landslides to estimate the 
probabilities of the occurrences of future landslides. 
 
 
5.   Towards risk assessment 
 
To illustrate how to use the prediction rate-curve to estimate the probabilities of the 
occurrences of future landslides for risk analysis, let use take Portuguese study area 
as an example.  The first step is to generate a predicted hazard map using the same FF 
model (as in Figure 2) based on all six layers of the causal factors and the 91 past 
landslides.  It should be somewhat similar to the predicted hazard map in Figure 2, 
where we have used all six layers and the only 45 Estimation-group landslides.  
Consider the most hazardous 0.2 km2 (8,000 pixels of 5m x 5m) from the predicted 
hazard map based on all 91 landslides, 0.2 km2 is approximately 1.5% of the whole 
study area.  Let us look at the prediction-rate curve (black curve with triangles) for 



“All six layers.”  When the X-axis is 0.015 (1.5%), the corresponding Y-axis of the 
prediction rate curve is 0.346 (or 34.6%).  

Suppose that we now assume that we expect 20 landslides over the next 10 years 
with an average size of the trigger areas of the future landslides that is approximately 
10m x 10m.  If we build 25 houses of the size of 10m x 15m within the most hazardous 
0.2 km2, the estimate of the probability that one of the houses will be part of the trigger 
areas of the 20 future landslides is approximately 40.5%.  Obviously as we change the 
expected number of future landslides, the average size of future landslides, and the 
number of houses or their size, the estimate of the corresponding probability will also 
be changed accordingly. 

Based on the estimates of such probabilities, once an acceptable high hazard area 
is identified as a priority for further analysis or for prevention follow-up, a second 
stage in the analysis can be initiated that requires an inventory of all human activities 
and assets that are within the its reach, or spatial domain, or zone of influence.  

We are proposing a new way to express hazard spatially and statistically. We 
generate numerical predictions maps in which we try to estimate the probability of 
occurrence of each class.  We produce a prediction-rate curve by using a validation 
technique.  If our database allows temporal validation, we can predict within the time 
interval provided by the temporal partitioning.   

This procedure would extend the general strategy described in Table 1, from a 
first stage in which we generate hazard predictions, to a second stage in which we 
estimate the probability for each hazard class and the corresponding spatial zone of 
influence.  Further research work by the authors is directed to this target. 
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