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Recently, there has been much debate whether niche based models (NBM) can predict biological invasions into new
areas. These studies have chiefly focused on the type of occurrence data to use for model calibration. Additionally,
pseudo-absences are also known to cause uncertainty in NBM, but are rarely tested for predicting invasiveness. Here we
test the implications of using different calibration sets for building worldwide invasiveness models for four major
problematic decapods: Cherax destructor, Eriocheir sinensis, Pacifastacus leniusculus and Procambarus clarkii. Using
Artificial Neural Networks models we compared predictions containing either native range occurrences (NRO), native
and invasive occurrences (NIO) and invasive only (IRO) coupled with three types of pseudo-absences � based on
sampling only 1) the native range (NRA), 2) native and invasive ranges (NIA), and 3) worldwide random (WRA). We
further analysed the potential gains in accuracy obtained through averaging across multiple models. Our results showed
that NRO and IRO provided the best predictions for native and invaded ranges, respectively. Still, NIO provided the best
balance in predicting both ranges. Pseudo-absences had a large influence on the predictive performance of the models,
and were more important for predictiveness than types of occurrences. Specifically, WRA performed the best and NRA
and NIA performed poorly. We also found little benefit in combining predictions since best performing single-models
showed consistently higher accuracies. We conclude that NBM can provide useful information in forecasting invasiveness
but are largely dependent on the type of initial information used and more efforts should be placed on recognizing its
implications. Our results also show extensive areas which are highly suitable for the studied species worldwide. In total
these areas reach from three to nine times the species current ranges and large portions of them are contiguous with
currently invasive populations.

Accurate information concerning the risk of a species
becoming established outside its native range can provide a
solid foundation for justifying preventive measures and has
been a subject of increasing focus. As such, invasion
biologists have sought predictive methods to forecast
invasions (Côté and Reynolds 2002; for a recent review see
Hayes and Barry 2008). Specifically, niche based models
(NBM), which estimate the degree of environmental
compatibility for the species in new areas, have become
increasingly popular in the last few years. For example,
Thuiller et al. (2005) found a close similarity between
worldwide NBM invasiveness predictions and South African
plant invaders distribution. Additionally, others have used
NBM predictions coupled with propagule pressure estimates
in order to provide final predictions of risk of establishment
of a species (Leung and Mandrak 2007).

Recently, there has been much debate concerning the use
of NBM for invasive species predictions (Mau-Crimmins
et al. 2006, Loo et al. 2007, Broennimann and Guisan
2008, Pearman et al. 2008, Steiner et al. 2008, Beaumont
et al. 2009). This has been chiefly focused on the type of

occurrence data to use for model calibration. Some studies
using native-based models were able to provide accurate
invasiveness predictions (Welk et al. 2002, Thuiller et al.
2005), but others found reduced predictability of the entire
invaded ranges (Mau-Crimmins et al. 2006, Fitzpatrick
et al. 2007, Broennimann and Guisan 2008, Beaumont
et al. 2009). Most recent studies argue that the use of
occurrence data from the invaded ranges improves predic-
tions (Mau-Crimmins et al. 2006, Loo et al. 2007,
Broennimann and Guisan 2008, Beaumont et al. 2009),
since invaders may not conserve their niches across space
(Broennimann et al. 2007, Pearman et al. 2008). Still,
invasive occurrences would be constructed only after the
invasion had already taken place and could have issues with
data availability. Moreover, if the invasion process is not
complete the equilibrium assumption underlying NBM
may be violated and cause underestimation of the full
invasiveness potential (Wilson et al. 2007). Further, native
range data for invasive species is also often unavailable or
difficult to collect (Mau-Crimmins et al. 2006). Thus,
while coupling native and invasive occurrences may allow
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the best overall characterization of species niches, there
could be issues with data availability. As such, a direct
comparison of the quantitative differences and marginal
gains of using different occurrence data would be useful.

The inclusion of absence data is arguably also an issue of
NBM for invaders. These data are usually hard to obtain
from common sources of species distribution data such as
museums or biodiversity databases (Chefaoui and Lobo
2008). To deal with these difficulties, the use of pseudo-
absences has been common since it allows the use of
‘‘group-discrimination techniques’’ considered to provide
more accurate predictions than presence only ‘‘profile
techniques’’ (Hirzel et al. 2001, Brotons et al. 2004,
Segurado and Araújo 2004). Still, the use of pseudo-
absences is a known cause of uncertainty in NBM (Lobo
2008, Phillips 2008) and the best way to obtain them is still
far from consensus (Chefaoui and Lobo 2008, VanDerWal
et al. 2009). Moreover, extraction techniques have mostly
been tested with species for which equilibrium with the
environment is assumed (i.e. species within their native
ranges) (for a review see Pearce and Boyce 2006). However,
invasion biology is interested in estimating suitability in
new areas and, thus, it is unclear how best to obtain pseudo-
absences. Options include: 1) use sites located within the
native range. The assumption is that there has likely been
sufficient time for propagules to reach these sites. 2) Use
sites within native and invasive ranges simultaneously since
new ranges may provide additional information. However,
this would not necessarily take into account the range of
environments possible. 3) Use random points across the
world. The consequences of these different forms of
pseudo-absences for predictive ability of invasions have
not been examined and are currently unknown.

For dealing with uncertainty in the predictions, research-
ers have been increasingly adopting the use of consensus
methods � ‘‘ensembles’’ of single-model NBMs, with
different architectures or different assumptions (i.e. aver-
aging across the results of single models). Model ensembles
have been applied for predicting distributions of threatened
species (Marmion et al. 2009), impacts of climate change
on species distributions (Araújo et al. 2005) or potential
distributions of invasive species (Stohlgren et al. 2010).
Ensembles have been mostly used to deal with the
uncertainty caused by the use of distinct correlative models.
Despite their potential to reduce uncertainties coming from
the use of different calibration data, to our knowledge,
ensembles have not been applied for dealing with this
source of uncertainty in invasiveness predictions.

In this study, we build habitat suitability models and test
the consequences of occurrence type and pseudo-absence
type. Specifically we examine the use of occurrence data
from their native range (NRO), invasive range (IRO) and
both native and invasive occurrences (NIO) in the
algorithm’s calibration sets. Simultaneously we also evaluate
the effect of three different pseudo-absence methods based
on sampling: 1) the native range (NRA), 2) native and
invasive range (NIA), and 3) woldwide random (WRA).
Finally, we also explore the use of consensus methods as a
possibility for dealing with the uncertainty coming from the
use of different calibration information.

We focus on four important invasive species: Cherax
destructor, Eriocheir sinensis, Procambarus clarkii and

Pacifastacus leniusculus. These are wide-ranging invasive
decapods, for which either populations or individuals are
being systematically found in new areas. Their impacts in
the invaded ecosystems are numerous (e.g. predation and
competition with native species, habitat alteration and
agricultural damage) and the major mechanisms of intro-
duction have been identified. As such, it will be most
effective for managers to target habitat suitability models to
these species. Still, the uncertainty coming from the use of
inadequate calibration information can undermine this
objective.

Methods

Invaders and distribution data

Cherax destructor (yabby) is a crayfish indigenous to eastern
Australia that currently invades several areas in Western
Australia and Iberian Peninsula. As for other invaders,
occurrence records for C. destructor are scarce and most have
a low spatial accuracy (Souty-Grosset et al. 2006). For
reducing the uncertainty of their spatial location of collected
data we opted for using a cell resolution of 50 km. We used
only one record per grid cell and gathered a total of 154
occurrence records for this species, 103 referring to its
native range and 51 from invaded areas. This information
was mostly collected from the Museum Victoria collections
and several published works.

Eriocheir sinensis (Chinese mitten crab) is an invasive
crab included in the 100 ‘‘World’s Worst’’ invaders by the
World Conservation Union (Lowe et al. 2000). The native
range of this catadromous crab encompasses eastern China,
Japan and eastern Russia, being presently invasive in several
coastal areas of North America and with particular expres-
sion in Europe (Gollasch 2006). For this species we
obtained a total of 295 occurrence records, 101 from its
native range and 194 from invaded areas. This information
was collected using the global biodiversity information
facility (GBIF) (<www.gbif.org/>) and a vast number of
published works referring to this species.

Procambarus clarkii (red swamp crayfish) is a commer-
cially harvested crayfish, native from northeast Mexico to
south-central USA. This species currently has invasive
populations across 5 continents (Africa, Asia, Europe,
North America and South America) and was recently
quoted as one of the 100 ‘‘Most invasive alien species in
Europe’’ (DAISIE 2008). For this crayfish we collected a
total of 598 occurrence records, 173 from its native range
and 425 from invaded areas. Its distributional data were
collected from the Smithsonian Inst. National Museum of
Natural History, the Illinois Natural History Survey, the
Atlas of crayfish in Europe (Souty-Grosset et al. 2006),
GBIF and several published works.

Pacifastacus leniusculus (signal crayfish) is native from the
north-western USA and south-western Canada and cur-
rently invades large portions of the European continent,
south-western USA and some Japanese regions (Souty-
Grosset et al. 2006). A total of 565 occurrence records were
collected for this species, 125 from its native range and 440
from invaded areas. The data sources used where the same
as for P. clarkii.
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Environmental factors

To summarize the world environmental characteristics
(Antarctica excluded) we considered 10 spatial coverages.
All environmental predictors used were not collinear
(Pearson’s jrjB0.8). Eight climatic variables concerning
the period 1961�2000 were included: near surface annual
mean temperature (amtemp); near surface mean maximum
temperature of the warmest month (maxtwm); near surface
mean minimum temperature of the coldest month
(mintcm); near-surface mean diurnal temperature range
(trange); mean number of frost days (frost); mean total
annual precipitation (anpre); mean total precipitation of the
wettest month (prewm) and mean total precipitation of the
driest month (predr). These predictors were built using
information from the CRU TS2.1 climate dataset (Mitchell
and Jones 2005). Two physiographic variables were also
included: altitude (alt) and in-stream distance to ocean
(disto). Altitude was included since it can act as a surrogate
of several environmental factors important for our species
such as stream velocity and size � usually faster and smaller
at higher elevations. In-stream distance to ocean was
employed only for E. sinensis due to its catadromous nature.
The digital elevation model was acquired on the United
States Geological Survey (USGS) HYDRO1k geographical
dataset (Verdin and Jenson 1996), from which in-stream
distance to ocean was calculated using ILWIS 3.5 Open
(<http://52north.org/>). All variables were resampled to a
50 km cell resolution using a bicubic method and projected
to a Mollweide equal area world projection.

Pseudo-absences extraction

Pseudo-absences can be seen as a sample of the available
conditions (Phillips et al. 2009) or as indicator of unsuitable
conditions (Chefaoui and Lobo 2008). For pseudo-absences
used in this study, we excluded all cells having occurrence of
the species in order to potentially maximize the representa-
tiveness of unsuitable conditions. Following this principle,
one approach for generating pseudo-absences is a simple
spatially-random generation of records across the world,
except from where presences are known (WRA).

Our second approach was entirely based on pseudo-
absences in the native range distribution of the species
(NRA). Given our relatively intense search for occurrence
data and the fact that all four species have well documented
native distributions, we assumed the areas without the
species presence within native range boundaries were
reliable representatives of unsuitable conditions. For
NRA, we limited our sampling area to the inner boundary
of the convex-hull defined by the occurrence records. Our
third approach consisted of sampling both native and
invasive ranges (NIA). By this we assume that the
unoccupied areas within the invasive range can provide
additional information regarding unsuitable conditions.
Sampling was made within the inner boundary of the
convex-hull defined by the occurrence records of each
range. To avoid wide and unrealistic sampling areas distinct
invasive populations of each species were delimited by
independent convex-hulls.

Dataset assembly

Before calibration datasets were built we retained 20% of
each species’ occurrence to validate our predictions (i.e. they
were not used to build the model). The remaining
occurrence records were used to build nine different types
of calibration datasets: 1) native range occurrences versus
worldwide random pseudo-absences; 2) native range occur-
rences versus native range pseudo-absences; 3) native range
occurrences versus native and invasive ranges pseudo-
absences; 4) native and invasive ranges occurrences versus
worldwide random pseudo-absences; 5) native and invasive
ranges occurrences versus native range pseudo-absences;
6) native and invasive ranges occurrences versus native and
invasive ranges pseudo-absences; 7) invasive range occur-
rences versus worldwide random pseudo-absences;
8) invasive range occurrences versus native range pseudo-
absences and 9) invasive range occurrences versus native and
invasive ranges pseudo-absences. For increasing the repre-
sentation of the environment captured by the pseudo-
absences we created 20 calibration datasets for each
combination. Each of these had an independently drawn
set of pseudo-absences. To avoid biasing predictions
towards a more prevalent response each calibration dataset
had a number of pseudo-absences equal to the number of
occurrences (Supplementary material Table S1).

Model selection and predictions

NBM has been built using many distinct correlative models
with several new approaches receiving great promise (Elith
et al. 2006). For this study we have chosen to use Artificial
Neural Networks (ANN) for predicting the probability of
environmental suitability in each cell. ANN is a method
used regularly in NBM and has also been recognized as one
of the best performing techniques (Segurado and Araújo
2004). Moreover ANN are particularly appropriate when
the relations between variables are not well known, which is
often the case with ecological data (Lek and Guégan 1999).
We used feedforward multilayer perceptron with back-
propagation ANN models (MLP-ANN). MLP-ANN is one
of the most common types of supervised ANN’s used in
ecology, being normally structured in one input layer
representing the predictors (environmental variables), one
or more hidden layers, each with a variable number of
nodes, and one output layer representing the dependent
variable (presence/absence).

Due to its large flexibility, ANN models are prone to
overfitting, making the model less generalizable and
decreasing their predictive power. To avoid overfitting in
our models we used both a cross-validation procedure
during the training episodes and tested different network
configurations in order to optimize their degree of complex-
ity and number of training cycles (Özesmia et al. 2006).
While higher complexity increases the risk of overfitting,
oversimplification can also result in poor fits. In the same
way, excessive training of the network is prone to overfit the
data while the inverse may result in failure to capture its
regularities.

Before building final predictions we tested for the more
appropriate network configuration for each of the dataset
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types. To do this we compared the performances of single
hidden layer MLP networks using three different levels of
complexity. According to Burnham and Anderson (2002),
the available data sample should be at least ten times larger
than the number of parameters in a model. We adopted this
principle for establishing the maximum complexity allowed
in each of the tested models. Medium complexity networks
were also considered, each containing half the hidden nodes
of the previous models. Finally, for the least complex
models we tested the performance of MLP-ANN contain-
ing no hidden nodes, which are equivalent to Generalized
Linear Models.

Models were built using Weka 3.6 (Witten and Frank
2005). To comply with the binary response of the
dependent variable, hidden nodes were automatically set
to sigmoid functions. All training sessions included a weight
decay function of the learning rate by dividing the starting
value by the cycle number, forcing a low learning rate and
by so reducing the risk of data overfit. A stopping rule was
also included in order to avoid overtraining. Models were
allowed to train for a total of 4000 cycles as long as the
predictions did not exceed more than 500 consecutive
cycles without performance improvement.

To analyse the predictive power of each of the three
network configurations we used a 10 fold cross-validation
procedure. That is, all models were calibrated using 90% of
cases for model calibration while the remaining 10% were
left-out for comparison with predicted values. This proce-
dure was then repeated 10 times until the entire dataset had
been compared against the predictions. These comparisons
were evaluated using the mean values of the root mean
squared error (RMSE) automatically supplied by Weka.
The network configurations achieving lower mean RMSE
for each dataset type were then selected and applied for
predicting along the entire range of worldwide environ-
mental conditions. Due to the use of 20 independent sets of
pseudo-absences, the final prediction for each dataset type
corresponded to the mean value obtained by these 20
calibration datasets.

Ensemble predictions

For dealing with the variability of single predictions, the
combination of ensemble models has been adopted in studies
with invasive species (Stohlgren et al. 2010). While the
majority of efforts have been focused on the variability caused
by the use of distinct modeling methods, this logic could
apply to reduce the uncertainty coming from the use of
different sets of calibration data. Here we explored the
possibility of improving invasiveness predictions using
ensemble models. We examined three types of ensembles �
predictions based on a weighted average of all single
models (WA(all)), averaged within each occurrence type
(WA(NRO); WA(NIO); WA(IRO)), and averaged within
each pseudo-absence type (WA(NRA), WA(NIA),
WA(WRA)). For each, all ensembles were obtained through
averaging single-models by their relative accuracy value
(Marmion et al. 2009). In order to attain a fair comparison
against the single-models predictions, relative accuracy value
was based on the RMSE obtained from the 10-fold
cross-validation process used in the network configuration

selection process as supplied by Weka (Supplementary
material Table S2). The weighted averages of the single-
models were performed as given by eq. 1

WAi�
P

((1 � RMSEpji) � pji)P
j(1 � RMSEpji)

(1)

where pji was the probability of environmental suitability for
the ith decapod species in each of the j-selected single-
models.

Models validation

After predictions were made for both single and combined-
models their evaluation was performed. We used the 20%
of each type of occurrence records (i.e. native and invasive)
initially excluded from the calibration datasets. These were
complemented with an equal number of worldwide random
sample of areas without native or invaded occurrences. For
increasing the representativeness of these areas in the
evaluation datasets we made 10 datasets for each type of
occurrence records. Each of these had an independently
drawn sample of areas without native or invaded occur-
rences (see Supplementary material Table S3 for datasets
description). Validation records were compared with the
predicted values using the area-under-the-curve of the
receiver-operating characteristic (ROC-AUC) (Hanley and
McNeil 1982) and Cohen’s Kappa (k) (Cohen 1960).
Kappa was calculated across a range of thresholds along the
0 to 1 interval using a 0.05 amplitude increment and its
maximum value selected (Elith et al. 2006). Both native and
invasive ranges were evaluated. Final evaluation values were
obtained by averaging the scores of the 10 replicate
evaluation datasets. For assessing variability in predictive
performance we also calculated the standard deviation of
the obtained evaluation scores. For qualitatively describing
the predictions values of k, we established the following
classes: kB0.2 poor; 0.2BkB0.4 fair; 0.4BkB0.6
moderate; 0.6BkB0.8 good and k�0.80 as very good
(modified from Landis and Koch 1977). For ROC-AUC
we considered ROC-AUCB0.8 as poor accuracy; 0.8B
ROC-AUCB0.9 moderate; 0.9BROC-AUCB0.95 good
and ROC-AUC�0.95 as very good (adapted from Thuiller
et al. 2005).

Species environmental space

We also examined environmental similarities between
native and invaded ranges. If environmental conditions
differ, this may indicate that a niche shift has occurred.
Following Mau-Crimmins et al. (2006), we used a Principal
Components Analysis (PCA) to simplify the species niche
dimensionality and compared the position occupied by each
occurrence record. By distinguishing native and invasive
occurrences this procedure allowed us to verify the degree of
environmental overlap between the two ranges occupied by
each species. This was made through a score plot of the two
Principal Components. Further we used the same method
to compare the position of the species occurrences with the
overall best performing pseudo-absences extraction method.
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For improving visual interpretation we only included 300
randomly selected pseudo-absence records for plotting.

Results

Predictive performances

For single-models, native range occurrences and invasive
range occurrences provided the best predictions for native
and invaded ranges, respectively (Table 1 and 2). Still,
combined native and invasive occurrences allowed a good
balance between the two, with best models attaining
good to very good accuracy values in both ranges
(Table 1 and 2). Interestingly, native range occurrences
allowed extrapolation to the invaded ranges of three of the
four species examined with moderate to good accuracy
values (C. destructor NRO best model: k�0.63 and ROC-
AUC�0.89; E. sinenis NRO best model: k�0.9 and
ROC-AUC�0.95; P. leniusculus NRO best model k�
0.89 and ROC-AUC�0.93, Table 2). In contrast, best
predictions using native range occurrences for the invasive-
ness potential of P. clarkii were worse (k�0.57; ROC-
AUC�0.71). Models using invasive range occurrences
were relatively modest in predicting the native ranges for
all species (Table 1). Variability in accuracy was similar for
the three types of occurrences in predicting native (mean
SD of NRO ROC-AUC: 0.029; mean SD of NIO ROC-
AUC: 0.033; mean SD of IRO ROC-AUC: 0.031) or
invasive distributions (mean SD of NRO ROC-AUC:
0.033; mean SD of NIO ROC-AUC: 0.030; mean SD of
IRO ROC-AUC: 0.029) (Supplementary material Table S4
and S5).

Type of pseudo-absence had a pronounced effect on
predictive performance. Specifically, models using native
range pseudo-absences and native and invasive ranges
pseudo-absences had the lowest predictive performances
(Table 1 and 2). Best performances were achieved unan-
imously with worldwide random pseudo-absences. World-
wide random pseudo-absences also provided the lowest
mean variability of accuracy in predicting both native
(mean SD of ROC-AUC: 0.019) and invasive distributions

(mean SD of ROC-AUC: 0.024) (Supplementary material
Table S4 and S5). We found that the weighted average
procedure provided poor to moderate predictive accuracy
for both native or invaded ranges for WA(all) and
WA(NIO) (Table 3). The WA(NRO) method provided
moderate accuracy for predicting native distributions but
was clearly unable to capture the species invasive ranges.
Inversely, the WA(IRO) method provided good predictions
concerning the species invasive distributions except for C.
destructor (k�0.64 and ROC-AUC�0.74), but was
unable to predict native ranges. The WA(NRA) and
WA(NIA) methods provided the lowest accuracies for
predicting the species native ranges but provided moderate
to good accuracy in predicting the invasive range of three
species (E. sinensis, P. leniusculus and P. clarkii). Finally, the
WA(WRA) model provided the best accuracies in both
ranges. However, in general we found little benefit of
combined models when compared to the best performing
single models, specifically native and invasive occurrences
coupled with worldwide random pseudo-absences.

Species environmental space

The PCA analysis allowed comparison of environmental
space of presences versus pseudo-absences (Fig. 1), and
between regions occupied in the native and exotic ranges
(Fig. 2). Not surprisingly, the comparison between occu-
pied ranges and best performing pseudo-absence extraction
method (worldwide random) illustrated a much larger range
of environmental conditions for pseudo-absences compared
to occurrence records (Fig. 2). Interestingly, however,
focusing on the occurrence data demonstrated that all
species were occupying different environmental space in the
naturalized areas compared to the exotic ranges (Fig. 2). For
C. destructor the difference occurred along component 1,
which was primarily a temperature composed gradient. The
multivariate space occupied by E. sinensis in the invaded
range was mainly differentiated along component 2,
primarily associated with both near surface mean minimum
temperature of the coldest month and mean total precipita-
tion of the driest month. For P. clarkii, despite the existence

Table 1. Predicting distribution in native range: single-models validation results of kappa statistic (k) and area under the curve of receiver-
operating characteristic (ROC-AUC) for native ranges using native range occurrences (NRO), native and invasive occurrences (NIO) and
invaded range occurrences (IRO), coupled with within native range pseudo-absences random extraction (NRA), native and invasive ranges
pseudo-absences random extraction (NIA) and the common spatially worldwide random pseudo-absences (WRA).

Species Pseudo-absences NRO NIO IRO

k ROC-AUC k ROC-AUC k ROC-AUC

C. destructor NRA 0.51 0.68 0.28 0.49 0.21 0.38
NIA 0.51 0.67 0.52 0.63 0.17 0.29
WRA 0.91 0.99 0.85 0.98 0.64 0.90

E. sinensis NRA 0.81 0.89 0.52 0.63 0.32 0.15
NIA 0.78 0.84 0.55 0.72 0.12 0.32
WRA 0.82 0.90 0.81 0.86 0.74 0.86

P. leniusculus NRA 0.68 0.75 0.50 0.60 0.49 0.35
NIA 0.51 0.63 0.45 0.55 0.24 0.44
WRA 0.95 0.99 0.88 0.96 0.82 0.91

P. clarkii NRA 0.79 0.85 0.39 0.38 0.02 0.07
NIA 0.79 0.86 0.52 0.74 0.05 0.21
WRA 0.93 0.99 0.90 0.97 0.78 0.86
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of some overlapping environmental conditions, native and
invasive populations were differentiated along a gradient
dominantly composed by the altitude and mean number of
frost days variables. The PCA clouds for P. leniusculus
indicated a less clear differentiation between the two ranges
than for the previous species, but still had large non-
overlapping portions along both components.

Discussion

In this study we aimed to test different yet plausible
calibration data for predicting invasions for four major
problematic decapods. Researchers have generally used
either data from the species native or invaded ranges
(Welk et al. 2002, Thuiller et al. 2005). More recent

Table 2. Predicting distribution in introduced range: single-models validation results of kappa statistic (k) and area under the curve of
receiver-operating characteristic (ROC-AUC) for invaded ranges using native range occurrences (NRO), native and invasive occurrences
(NIO) and invaded range occurrences (IRO), coupled with within native range pseudo-absences random extraction (NRA), native and
invasive ranges pseudo-absences random extraction (NIA) and the common spatially worldwide random pseudo-absences (WRA).

Species Pseudo-absences NRO NIO IRO

k ROC-AUC k ROC-AUC k ROC-AUC

C. destructor NRA 0.28 0.45 0.42 0.67 0.32 0.59
NIA 0.23 0.39 0.28 0.42 0.64 0.72
WRA 0.63 0.89 0.74 0.93 0.74 0.97

E. sinensis NRA 0.57 0.67 0.80 0.90 0.68 0.81
NIA 0.45 0.61 0.78 0.89 0.76 0.88
WRA 0.90 0.95 0.90 0.96 0.91 0.97

P. leniusculus NRA 0.58 0.70 0.66 0.78 0.83 0.85
NIA 0.46 0.63 0.76 0.88 0.85 0.93
WRA 0.89 0.93 0.90 0.96 0.91 0.96

P. clarkii NRA 0.56 0.70 0.76 0.86 0.72 0.84
NIA 0.33 0.56 0.80 0.91 0.81 0.95
WRA 0.57 0.71 0.87 0.94 0.88 0.97

Figure 1. Position in the environmental space of native (grey squares) and invasive (black dots) populations and worldwide random
pseudo-absences (light grey diamonds). A score plot of the two components was made from a PCA containing all environmental variables.
PC1 and PC2 for (a) Cherax destructor with worldwide random pseudo-absences explained 76% of total variance, for (b) Eriocheir sinensis
with worldwide random pseudo-absences explained 70% of total variance, for (c) Pacifastacus leniusculus with worldwide random pseudo-
absences explained 75% of total variance, for (d) Procambarus clarkii with worldwide random pseudo-absences explained 73% of total
variance. Components loadings are represented in the interior boxes.
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studies have argued that due to possible changes in the
species niches, coupling both native and invasive occurrence
data in the calibration datasets might be the preferable
option (Broennimann and Guisan 2008, Beaumont et al.
2009). In the same way pseudo-absences are also a known
source of uncertainty in NBM (Lobo 2008, Phillips 2008),
but to which little attention has been given in invasiveness
predictions. Further, in invasion biology, NBM are typi-
cally applied to wide extents (continental or global scales),
comprising a broad variety of environmental conditions
that occur with different spatial frequencies and for which
propagule pressure is usually unknown. Our results demon-
strate that a large variability in predictive power can arise
from the choice of both occurrence and pseudo-absence
data.

Invasiveness predictability and the role of
calibration data

Niche shifts occur when a species is occupying different
environmental conditions in new areas or time periods than
the ones found in initial populations. These shifts may be
due to changes in the species realized niche (e.g. when a
natural competitor is absent in new areas or the species
moved to new environmental combinations in the invaded
regions) or in its fundamental niche caused by changes in
the species physiology (e.g. due to evolutionary change);
either may undermine the ability of NBM to predict new

suitable areas for invaders (see Pearman et al. 2008, for a
review). Our results are consistent with recent arguments
that incorporating information from both native and
introduced ranges yields the best estimate of the invasion
potential (Broennimann and Guisan 2008, Beaumont et al.
2009), in that NBM built with both sets of occurrence data
was able to simultaneously predict invasions in both ranges
well. Thus, if such data are available, it should be used to
make future predictions. However, while we should
certainly be aware of the effects of possible niche shifts,
our results also show that predictions based on native
distributions could accurately forecast the invaded areas for
three out of four species examined: C. destructor, E. sinensis
and P. leniusculus, but not for P. clarkii, using the best
performing pseudo-absence type (WRA, discussed below).
These results suggest that, while caution is warranted, in the
absence of information in the invaded range, NBM based
on native distributions can still be useful in invasiveness
forecasting, especially for forecasting the possible range of
very new invasions or potential invasions that have not yet
occurred. This is particularly relevant for invasive species
modeling, where much of the interest in NBM has been its
promise for forecasting invasions into new areas, before they
actually occur. Further, despite environmental conditions
differing between native and introduced ranges for all
species (Fig. 2), NBM retained its predictive abilities. We
argue that this occurred because NBM was able to identify
which environmental variables were important for species

Figure 2. Position in the environmental space of native (grey squares) and invasive (black dots) populations. A score plot of the two
components was made from a PCA containing all environmental variables. PC1 and PC2 for (a) Cherax destructor explained 69% of total
variance, for (b) Eriocheir sinensis explained 66%, for (c) Pacifastacus leniusculus 77% and (d) Procambarus clarkii 67%. Components
loadings are represented in the lower left corner.
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establishment, and down weighted those that were not
important (Supplementary material Table S7).

While the majority of effort has been focused on the type
of occurrence data (Mau-Crimmins et al. 2006, Loo et al.
2007, Broennimann and Guisan 2008, Beaumont et al.
2009), our results suggest that NBM models are even more
sensitive to the type of pseudo-absences used. Native and
native and invasive extraction methods attained the lowest
performances for all species and types of occurrence data
(Table 1 and 2). Although the ranges sampled by these
pseudo-absences likely had the greatest chance of having
received propagule pressure over time, this benefit appears
to have been outweighed by having restricted environmental
conditions which could not be extrapolated to new areas.

Worldwide random pseudo-absences had the stronger
predictiveness achieving the highest evaluation scores for all
predictions in both ranges (Table 1 and 2). This result seems
supportive of this method. Still, the implications of sampling
areas with unequal or unknown propagule pressure require
further research. Consensus methods showed poor to high
performances and could be a good alternative to deal with
the wide array of possible outcomes. Still, their best
performances in terms of predictiveness was no better than
the best fitting single model � native and invasive occur-
rences with worldwide random pseudo-absences. While
applying consensus methods for models obtained by distinct
algorithms (e.g. regressions, classification models or machine
learning) has been shown to improve predictive accuracy
(Marmion et al. 2009, Stohlgren et al. 2010), we did not find
obvious improvements for combining distinct calibration
data. Still, the use of these ensembles may prove useful for
cases where it is not possible to identify a single best
performing model. Further, as we visually assessed in our
predictions, single-models with similar accuracies may
provide different spatial patterns of predictions. In such
cases ensembles may also be of use by providing a consensual
spatial pattern or model uncertainty.

Species invasiveness potential and conservation
concerns

We used the best performing models in both native and
introduced ranges to analyze their invasiveness potential.
We found that each of the studied species still has large
extents of suitable areas unoccupied (Fig. 3). This result is
of high conservation concern, since the direct impact of
these species in biological diversity is known to be high.
Conservation problems caused by these decapods have been
reported including disease transmission, competition, and
active predation of native species and changes in the trophic
webs of the invaded ecosystems (Gutierrez-Yurrita et al.
1999, Lynas et al. 2004, Correia and Anastácio 2008, Cruz
et al. 2008, Dittel and Epifanio 2009). For example, Cruz
et al. (2008) related the strong decline of both abundance
and diversity of amphibian populations in a Portuguese
protected wetland with the establishment of P. clarkii.
These authors found that since the initial establishment of
this invader, the number of amphibian species in the area
was reduced from 13 to 6. It is thus worrying that the four
species show suitable unoccupied areas that surpass the
extents of the currently known invasive ranges (Fig. 4).
Using the suitability threshold achieving higher kappa value
to discretize predictions we found that higher suitability
areas outside the species current ranges (both native and
invaded) are nearly three times larger for P. leniusculus, four
times for P. clarkii, seven times for E. sinensis and about
nine times for C. destructor. Although also dependent on
propagule pressure, these values indicate a large invasive
potential for these species and detailed predictions should
be conducted in areas of interest. Suitability for C. destructor
and P. clarkii are noticeably similar (Fig. 3). This is a clear
reflection of the similarity between the ecological prefer-
ences of these two species (Nyström 2002). Several
biodiversity hotspots (Myers et al. 2000) fall under their
environmental requirements. The Mediterranean basin and

Figure 3. Best performing suitability models in both native and invaded areas for (a) Cherax destructor, (b) Eriocheir sinensis,
(c) Pacifastacus leniusculus and (d) Procambarus clarkii.
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southwest Australia are of special concern for P. clarkii and
C. destructor respectively. The Mediterranean basin while
being highly suitable for P. clarkii (Fig. 3) also encompasses
the majority of P. clarkii invasive range in Europe (mostly
found in the Iberian Peninsula). It is thus worrying that new
nonadjacent invasions are also taking place here, such as in
the Nile River (Cumberlidge 2009). Under this context
the Mediterranean region may be particularly important
because it contains a largely endemic biota and there is a
great potential for invasion due to the high propagule
pressure and environmental suitability. Likewise the cur-
rently largest invaded area for C. destructor occurs mostly
within Western Australia � an area of high biological
diversity � and its impact on the endemic crayfish species
here is a concern (Lynas et al. 2004).

It is also worth noting that for these two species some
high latitude areas such as several southern regions of
Iceland and Greenland, Aleutian Islands and the southern
tip of South America appear as suitable for this warm-water
species. These areas, despite presenting colder temperatures
than the ones verified in the majority of their distribution
ranges, are under influence of the oceans moderating effect
and their mean minimum temperatures reach fairly higher
values than many other areas within the same latitudinal
ranges. Although low temperatures have a known influence
on some biological traits of P. clarkii (for a compilation see
Anastácio et al. 1999) and C. destructor (Semple et al.
1995), these relatively unsuspicious areas are possibly on the
edge of the thermal regimes required for these species to
persist. Another possibility is that these values result from
extrapolation errors. Whilst new methods for assessing that
possibility exist (Elith et al. 2010) this evaluation would
require a different modeling framework, beyond the scope
of this work.

Also P. leniusculus show a large potential for future
invasions. Despite already being the most widespread
invasive crayfish in Europe, its invasion here seems to still
be far from finished. The invasiveness projected for this
continent shows a wide extent of suitable, yet uninvaded,
areas mostly in eastern Europe, the Balkans and Turkey
(Fig. 3). This potential expansion is of particular concern
for native crayfish populations. Mostly due to competition
and its role on transmission of the crayfish plague
(Aphanomyces astaci), P. leniusculus is considered to have a
major role in the extirpation of native crayfish populations
(Souty-Grosset et al. 2006). Thus, crayfish conservationists
should be aware that this species still has a large extent of
environmentally suitable areas in contiguity to the existing
invasive populations.

For E. sinensis five large suitable areas emerge as
particularly vulnerable to new large-scale invasions: sur-
roundings of Black and Caspian Seas, the Mediterranean
basin (especially on the European side), and both eastern
and western North American coasts (Fig. 3). In fact, besides
presenting high suitability, small populations or isolated
individuals have already been reported here (Dittel and
Epifanio 2009). In contrast, it is not clear why E. sinensis
has not been found in the southern Hemisphere. Our
results also show that there are considerable extents of
suitable environments in the southern areas of Australia,
Africa and South America (Fig. 3). Ballast waters are the
main vector of introduction of this species and some ofTa
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these areas also have extensive international shipping
connections. We therefore recommend that attention
should be given to the possible existence of unknown
populations or new introductions of E. sinensis in these areas
since its establishment potential is high.

Caveats and future directions

While pseudo-absences are of current use in NBM, a large
number of its implications remain poorly understood. We
compared three distinct types of extraction methods and
found substantial differences in accuracy. Still, more
detailed comparisons should be addressed in the future.
More specifically, different evaluation dataset types should
also be tested. Our predictive evaluation relied on the use of
worldwide pseudo-absences and, while to our mind this
allows to test predictions for the entire study area, it may
also provide overoptimistic scores for models calibrated
with the same type of information. Further, increasing the
number of invaders tested and more robust distribution
datasets would also potentially increase the confidence of
the obtained results. A comparison with other extraction
approaches (and their paradigms) addressing issues such as
sampling bias on the occurrence data (Phillips et al. 2009)
or the use of presence�only NBM for driving extraction
(Chefaoui and Lobo 2008) would also be highly valuable
future directions, although they can require additional
information that may not be available (e.g. some metric
of sampling intensity or bias, Phillips et al. 2009).

Future work should also consider the effects that known
issues of NBM such as spatial autocorrelation have in its
predictive performance. While previous studies have found
that simple spatial autocorrelation models can perform as
well as NBM (Bahn and McGill 2007), this only indicates
that we cannot distinguish between habitat suitability and
spatial autocorrelation. However, because we were able to

extrapolate predictions from the native range to the exotic
range, we were able to show predictive power in new
spatially uncorrelated areas. Still, additional analyses on this
topic are warranted. Other issues known to affect NBM
such as unequal propagule pressure worldwide or potential
lacks in our occurrence data (e.g. due to incomplete
knowledge about the species invasive range) are of
importance to our study and should also be explored in
the future. One possibility to address the issues of unequal
propagule pressure and spatial autocorrelation is to include
a propagule pressure model (which provides a mechanistic
model of spatial autocorrelation) together with our NBM
(Leung and Mandrak 2007). Finally, obtained potential
distributions for our invaders would also benefit from the
availability of distribution data with higher spatial accuracy.
Such data would allow the use of more detailed environ-
mental data and thus increasing the detail of predictions
which would also increase their value for managing
purposes.

Despite the previous caveats, we present the first
description of the worldwide invasiveness potential for
four important invasive decapods. We also determined that
the obtained projections are highly dependent on the type
of data used for model calibration. While the type of
occurrence data used could be important, accurate predic-
tions were still obtained based solely on the occurrences in
the native range for three of the four species examined.
Moreover, our results suggest that pseudo-absences extrac-
tion methods were even more influential than the type of
occurrence data used. Finally, despite its good results in
other situations, the use of consensus models had limited
benefit, with the best single modeling approach achieving
consistently higher accuracies. Our results are supportive
that worldwide predictions of invasiveness should be based
on both native and invasive data, when available, and that
worldwide random pseudo-absences seems the more favour-
able option if real absence information is lacking.

Figure 4. Native (grey circles) and invasive occurrences (black circles) of (a) Cherax destructor, (b) Eriocheir sinensis, (c) Pacifastacus
leniusculus and (d) Procambarus clarkii used for model calibration.
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.Özesmia, S. L. et al. 2006. Methodological issues in building,
training, and testing artificial neural networks in ecological
applications. � Ecol. Model. 195: 83�93.

Pearce, J. L. and Boyce, M. S. 2006. Modelling distribution and
abundance with presence�only data. � J. Appl. Ecol. 43: 405�
412.

Pearman, P. B. et al. 2008. Niche dynamics in space and time.
� Trends Ecol. Evol. 23: 149�158.

Phillips, S. J. 2008. Transferability, sample selection bias and
background data in presence�only modelling: a response to
Peterson et al. (2007). � Ecography 31: 272�278.

Phillips, S. J. et al. 2009. Sample selection bias and presence�only
distribution models: implications for background and pseudo-
absence data. � Ecol. Appl. 19: 181�197.

11-EV

http://www.nobanis.org
http://www.issg.org/booklet.pdf
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